Citation: | CHEN Chen, HE Xingyi, NIU Qinghe, YU Hongxu, XIE Xiangyu. Study on P-wave velocity and mechanical response characteristic of rock in coal seam roof with supercritical CO2 injection[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 98-104. DOI: 10.3969/j.issn.1001-1986.2021.05.011 |
[1] |
JIANG Kai, ASHWORTH P. The development of carbon capture utilization and storage(CCUS) research in China: A bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2020: 110521. http://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120308066.html
|
[2] |
秦积舜, 李永亮, 吴德彬, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20–28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001004.htm
QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20–28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001004.htm
|
[3] |
梁卫国, 吴迪, 赵阳升. CO2驱替煤层CH4试验研究[J]. 岩石力学与工程学报, 2010, 29(4): 665–673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004005.htm
LIANG Weiguo, WU Di, ZHAO Yangsheng. Experimental study of coalbeds methane replacement by carbon dioxide[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 665–673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004005.htm
|
[4] |
任韶然, 李德祥, 张亮, 等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报, 2014, 35(3): 591–601. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403027.htm
REN Shaoran, LI Dexiang, ZHANG Liang, et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica, 2014, 35(3): 591–601. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403027.htm
|
[5] |
桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(5): 1–9. DOI: 10.3969/j.issn.1001-1986.2018.05.001
SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration, 2018, 46(5): 1–9. DOI: 10.3969/j.issn.1001-1986.2018.05.001
|
[6] |
张子戌, 刘高峰, 张小东, 等. CH4/CO2不同浓度混合气体的吸附–解吸实验[J]. 煤炭学报, 2009, 34(4): 551–555. DOI: 10.3321/j.issn:0253-9993.2009.04.024
ZHANG Zixu, LIU Gaofeng, ZHANG Xiaodong, et al. Adsorption-desorption experiments of CH4 and CO2 with different consistency[J]. Journal of China Coal Society, 2009, 34(4): 551–555. DOI: 10.3321/j.issn:0253-9993.2009.04.024
|
[7] |
唐书恒, 汤达祯, 杨起. 二元气体等温吸附实验及其对煤层甲烷开发的意义[J]. 地球科学, 2004, 29(2): 219–223. DOI: 10.3321/j.issn:1000-2383.2004.02.015
TANG Shuheng, TANG Dazhen, YANG Qi. Binary-component gas adsorption isotherm experiments and their significance to exploitation of coalbed methane[J]. Earth Science, 2004, 29(2): 219–223. DOI: 10.3321/j.issn:1000-2383.2004.02.015
|
[8] |
涂乙, 谢传礼, 李武广, 等. 煤层对CO2、CH4和N2吸附/解吸规律研究[J]. 煤炭科学技术, 2012, 40(2): 70–72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201202021.htm
TU Yi, XIE Chuanli, LI Wuguang, et al. Study on CO2, CH4 and N2 adsorption and desorption law of seam[J]. Coal Science and Technology, 2012, 40(2): 70–72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201202021.htm
|
[9] |
GENSTERBLUM Y, BUSCH A, KROOSS B M. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material[J]. Fuel, 2014, 115: 581–588. DOI: 10.1016/j.fuel.2013.07.014
|
[10] |
贺伟. 不同煤阶煤体吸附储存CO2膨胀变形特性试验研究[D]. 太原: 太原理工大学, 2018.
HE Wei. Experimental study on swelling characteristics of CO2 adsorption and storage in different coal rank[D]. Taiyuan: Taiyuan University of Technology, 2018.
|
[11] |
牛庆合, 曹丽文, 周效志. CO2注入对煤储层应力应变与渗透率影响的实验研究[J]. 煤田地质与勘探, 2018, 46(5): 43–48. DOI: 10.3969/j.issn.1001-1986.2018.05.007
NIU Qinghe, CAO Liwen, ZHOU Xiaozhi. Experimental study of the influences of CO2 injection on stress-strain and permeability of coal reservoir[J]. Coal Geology & Exploration, 2018, 46(5): 43–48. DOI: 10.3969/j.issn.1001-1986.2018.05.007
|
[12] |
HEWAGE S, PERERA S, PATHEGAMA R. Modelling of fully-coupled CO2 diffusion and adsorption-induced coal matrix swelling[J]. Fuel, 2019, 262: 116486. http://www.sciencedirect.com/science/article/pii/S001623611931840X
|
[13] |
刘长江, 桑树勋, RUDOLPH V. 模拟CO2埋藏不同煤级煤孔隙结构变化实验研究[J]. 中国矿业大学学报, 2010, 39(4): 496–503. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004005.htm
LIU Changjiang, SANG Shuxun, RUDOLPH V. Simulation experiment on the changes of pore structure in different ranks coals during the CO2 geosequestration[J]. Journal of China University of Mining & Technology, 2010, 39(4): 496–503. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004005.htm
|
[14] |
PIRZADA M A, ZOORABADI M, LAMEI RAMANDI H, et al. CO2 sorption induced damage in coals in unconfined and confined stress states: A micrometer to core scale investigation[J]. International Journal of Coal Geology, 2018, 198: 167–176. DOI: 10.1016/j.coal.2018.09.009
|
[15] |
陈德飞. 气体吸附对煤岩渗流及力学性质的影响[D]. 成都: 西南石油大学, 2014.
CHEN Defei. Influence of gas adsorption on seepage and mechanical properties of coal-rock[D]. Chengdu: Southwest Petroleum University, 2014.
|
[16] |
MASOUDIAN M S, AIREY D W, EL-Zein A. Experimental investigations on the effect of CO2 on mechanics of coal[J]. International Journal of Coal Geology, 2014, 128/129: 12–23. DOI: 10.1016/j.coal.2014.04.001
|
[17] |
NIU Qinghe, CAO Liwen, SANG Shuxun, et al. Experimental study on the softening effect and mechanism of anthracite with CO2 injection[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104614. DOI: 10.1016/j.ijrmms.2021.104614
|
[18] |
王开然. 煤层系统CO2–水–煤(岩)地球化学作用及其对盖层封闭性演化的影响[D]. 长春: 吉林大学, 2016.
WANG Kairan. CO2-H2O-coal(rock) geochemical interaction in coal seam and its effects on the evolution of caprock sealing ability[D]. Changchun: Jilin University, 2016.
|
[19] |
JAYASEKARA D W, RANJITH P G, WANNIARACHCHI W A M, et al. Effect of salinity on supercritical CO2 permeability of caprock in deep saline aquifers: An experimental study[J]. Energy, 2020, 191: 116486. DOI: 10.1016/j.energy.2019.116486
|
[20] |
WANG Kairan, XU Tianfu, WANG Fugang, et al. Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J]. International Journal of Coal Geology, 2016, 154/155: 265–274. DOI: 10.1016/j.coal.2016.01.010
|
[21] |
ZHANG Kun, SANG Shuxun, ZHOU Xiaozhi, et al. Influence of supercritical CO2-H2O-caprock interactions on the sealing capability of deep coal seam caprocks related to CO2 geological storage: A case study of the silty mudstone caprock of coal seam No. 3 in the Qinshui Basin, China[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103282. DOI: 10.1016/j.ijggc.2021.103282
|
[22] |
朱世良, 邵丽伟, 周效志, 等. 煤基CO2地质封存对顶板裂缝导流能力影响实验研究[J]. 煤田地质与勘探, 2021, 49(3): 128–132. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=10217024-5c50-4d50-8f9a-abf4c48c1945
ZHU Shiliang, SHAO Liwei, ZHOU Xiaozhi, et al. Experimental study on influence of coal-based CO2 geological storage on roof fracture conductivity[J]. Coal Geology & Exploration, 2021, 49(3): 128–132. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=10217024-5c50-4d50-8f9a-abf4c48c1945
|
[23] |
熊健, 黄林林, 刘向君, 等. 高温影响下页岩岩石的声学特性实验研究[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 35–43. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201906007.htm
XIONG Jian, HUANG Linlin, LIU Xiangjun, et al. An experiment study on the effect of high temperature on the acoustic properties of the shale[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 35–43. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201906007.htm
|
[24] |
邵明申, 李黎, 李最雄. 龙游石窟砂岩在不同含水状态下的弹性波速与力学性能[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3514–3518. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2013.htm
SHAO Mingshen, LI Li, LI Zuixiong. Elastic wave velocity and mechanical properties of sandstone under different water contents at Longyou Grottoes[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup. 2): 3514–3518. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2013.htm
|
[25] |
董振国, 赵伟, 任玺宁, 等. 声波测井在煤岩弹性力学分析中的应用[J]. 煤田地质与勘探, 2019, 47(增刊1): 104–112. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3d3d444b-a072-40d9-8a23-94d7934cc4fd
DONG Zhenguo, ZHAO Wei, REN Xining, et al. Application of acoustic logging in elastic mechanics analysis of coal and rock[J]. Coal Geology & Exploration, 2019, 47(Sup. 1): 104–112. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3d3d444b-a072-40d9-8a23-94d7934cc4fd
|
[26] |
孟召平, 张吉昌, TIEDEMANN J, 等. 煤系岩石物理力学参数与声波速度之间的关系[J]. 地球物理学报, 2006, 49(5): 1505–1510. DOI: 10.3321/j.issn:0001-5733.2006.05.031
MENG Zhaoping, ZHANG Jichang, TIEDEMANN J, et al. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks[J]. Chinese Journal of Geophysics, 2006, 49(5): 1505–1510. DOI: 10.3321/j.issn:0001-5733.2006.05.031
|
[27] |
ZHU Zhennan, GAMAGE R P, TIAN Hong, et al. Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments[J]. Renewable Energy, 2021, 168: 375–392. DOI: 10.1016/j.renene.2020.12.048
|
[28] |
刘明泽, 白冰, 李小春, 等. CO2–水两相条件下砂岩致裂特征与有效应力模型的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 250–259. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602006.htm
LIU Mingze, BAI Bing, LI Xiaochun, et al. Experimental study of fracturing characteristics of sandstone under CO2-water two-phase condition and effective stress model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 250–259. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602006.htm
|
[29] |
朱立. CO2地下封存煤/盖层变形和破裂演化特征研究[D]. 徐州: 中国矿业大学, 2014.
ZHU Li. Deformation and fractures evolution characteristics of coal and caprock during CO2 sequestration[D]. Xuzhou: China University of Mining and Technology, 2014.
|
[30] |
MENG Zhaoping, ZHANG Jincai, WANG Rui. In-situ stress, pore pressure and stress-dependent permeability in the southern Qinshui Basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 122–131. DOI: 10.1016/j.ijrmms.2010.10.003
|
[31] |
LIANG Yunpei, DAI Jiahui, ZOU Quanle, et al. Ignition mechanism of gas in goaf induced by the caving and friction of sandstone roof containing pyrite[J]. Process Safety and Environmental Protection, 2019, 124: 84–96. DOI: 10.1016/j.psep.2019.02.005
|
[32] |
ZHANG Jiangong, MIAO Xiexing, HUANG Yanli, et al. Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application[J]. International Journal of Mining Science and Technology, 2014(3): 349–352. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZHKD201403012
|
[33] |
ZHANG C L, WIECZOREK K, XIE M L. Swelling experiments on mudstones[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 44–51. http://www.sciencedirect.com/science/article/pii/S1674775515300196
|
[34] |
ZHANG Yihuai, ZHANG Zike, SARMADIVALEH M, et al. Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO2[J]. International Journal of Coal Geology, 2017, 175: 40–50. DOI: 10.1016/j.coal.2017.04.002
|
[35] |
刑俊旺. 超临界CO2与CH4吸附解吸引起煤体变形特性的对比研究[D]. 太原: 太原理工大学, 2018.
XING Junwang. Comparative study on adsorption and desorption-induced coal deformation characteristics of supercritical CO2, and CH4[D]. Taiyuan: Taiyuan University of Technology, 2018.
|