LI Gui-hua, ZHU Guang-ming, LI Gui-liang. Wave field characteristics of seismic survey in coal mine roadway[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 54-56,60. DOI: 10.3969/j.issn.1001-1986.2009.05.013
Citation: LI Gui-hua, ZHU Guang-ming, LI Gui-liang. Wave field characteristics of seismic survey in coal mine roadway[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 54-56,60. DOI: 10.3969/j.issn.1001-1986.2009.05.013

Wave field characteristics of seismic survey in coal mine roadway

More Information
  • Received Date: January 05, 2009
  • Available Online: March 10, 2023
  • In order to study the wave field characteristics of seismic survey in coal mine roadway,and distinguish different type of waves in the wave field,with the staggered-grid high order finite difference wave field simulation method,this papar simulates the elastic wave field stimulated with point-source or plane wave source in the coal mine roadway.By the wave field analysis,it indicated that in the common point gather the waves not only have various waves of conventional seismic,but also have multi-reflection and multiple refraction propagating between the top interface and the lower interface,which are the main interference wave.In the seismic records of plane wave source the cavity underneath the roadway shows as a obviously unusual “candied fruit".The result of wave field analysis provided a important basis for the seismic survey method and a effective way to estimate possibly achieved regarding effect.
  • Related Articles

    [1]HE Dixiu, JI Guangzhong, JIAO Wenjie, ZHANG Yawei, YU Kun. Numerical simulations and wavefield analysis of in-seam wave advance detection in viscoelastic media[J]. COAL GEOLOGY & EXPLORATION.
    [2]GUO Jianlei, GAO Xiaowei, HOU Yanwei. Research on three-component responses characteristics of axial anisotropy tunnel-hole transient electromagnetic[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(7): 52-62. DOI: 10.12363/issn.1001-1986.21.12.0878
    [3]XU Bin, XIANG Fang, LI Shuxia. Distribution characteristics and paleo-climatic significance of continental climate-sensitive sediments in the Late Cretaceous in China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 190-199. DOI: 10.3969/j.issn.1001-1986.2021.05.021
    [4]YAO Weihua, WANG Peng, LI Mingxing, SU Chao, CHENG Siyuan. Experimental study of three-component down-hole TEM for detecting water-filled goaf[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 54-62. DOI: 10.3969/j.issn.1001-1986.2019.05.008
    [5]YUE Xiaopeng, BAI Chaoying, YUE Chongwang. Accuracy analysis of elastic wave field simulation based on high-order staggered grid finite difference scheme[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 125-130. DOI: 10.3969/j.issn.1001-1986.2017.01.025
    [6]YUE Chongwang, WANG Fei. The simulation of acoustic wave propagation in the borehole surrounded by vertical transversely isotropic (VTI) media using staggered-grid high-order finite-difference method[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 125-131. DOI: 10.3969/j.issn.1001-1986.2016.04.024
    [7]ZHI Min. High-order implicit finite difference numerical simulation of acoustic wave equation[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 106-111. DOI: 10.3969/j.issn.1001-1986.2016.02.019
    [8]ZHONG Fei, ZHANG Wei, JIAO Biaoqiang, ZHONG Yuexian. Finite difference simulation of viscoelastic wave equation in vibroseis[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(2): 57-60,65. DOI: 10.3969/j.issn.1001-1986.2011.02.013
    [9]YANG Tianchun, ZHU Ziqiang, ZHOU Yong. Finite-difference modeling of Rayleigh wave and drawing of seismograms in Matlab environment[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(1): 62-65,70. DOI: 10.3969/j.issn.1001-1986.2010.01.015
    [10]LI Gui-hua, ZHU Guang-ming, ZHANG Wen-bo. Wavefield characteristic of 3C crosswell seismic data in the VTI media[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(1): 66-71.
  • Cited by

    Periodical cited type(17)

    1. 李昊,李叶繁,魏长婧,王磊杰,康利军,姜川. 基于SBAS-InSAR技术的登封市潜在地质灾害识别研究. 河南科学. 2024(08): 1170-1178 .
    2. 汪晨星,史凌亚,李瑞东. 基于Stacking-InSAR的煤矿沉降监测与综采面参数反演. 陕西煤炭. 2024(10): 14-20 .
    3. 张学辉,崔振东,张中俭,赵磊磊,魏涛,刘东旭,王龙灿. 基于SBAS-InSAR技术的新疆某煤矿长时序地表形变监测与分析. 新疆地质. 2024(03): 459-465 .
    4. 姜川,王磊杰,樊高强,李昊,李叶繁,苑雨,张曦. 基于SBAS-InSAR的郑州煤炭矿区地表沉降监测及演化规律分析. 中国煤炭. 2024(10): 158-165 .
    5. 任瑶瑶,刘国林,牛冲,韩宇,周一鸣. 基于MSBAS InSAR技术的沧州市地表形变监测与分析. 地球物理学进展. 2023(02): 588-599 .
    6. 孙晓云. 基于InSAR和微震技术矿区非法开采事件监测技术探讨和应用. 内蒙古煤炭经济. 2023(03): 113-117 .
    7. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    8. 孙军,张锦. 基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测. 煤矿安全. 2022(03): 162-169 .
    9. 陈宗玥. 基于图像识别的大型建筑钢结构形变监测研究. 测绘技术装备. 2022(01): 17-21 .
    10. 高宏伟,史先琳,陈晨,尹勇,戴可人. 云南漾濞地震地表二维形变提取. 昆明理工大学学报(自然科学版). 2022(02): 57-64 .
    11. 王凤云,陶秋香,陈洋,韩宇,郭在洁. 基于InSAR的煤矿采空区地表形变监测与预警. 煤矿安全. 2022(06): 195-203 .
    12. 贺黎明,裴攀科,吴立新,张香凝. 基于时序InSAR的矿区滑坡前地表运动特征分析. 东北大学学报(自然科学版). 2022(09): 1314-1321+1368 .
    13. 胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
    14. 刘健,周皓,张恩正. 基于机器学习的煤矿开采沉陷自动化监测系统. 信息技术. 2022(11): 143-148+154 .
    15. 白洁. 基于机器视觉的测绘工程地面位移形变测量方法. 经纬天地. 2021(02): 93-97 .
    16. 姚鑫,吴付英. 基于GIS技术的矿区开采沉陷形变监测系统设计. 矿产与地质. 2021(03): 549-553+573 .
    17. 高文,王华,侯凌志. 矿山地质灾害监测方法与自动化监测预警系统应用. 西部资源. 2020(06): 66-68 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (38) PDF downloads (1) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return