YUE Xiaopeng, BAI Chaoying, YUE Chongwang. Accuracy analysis of elastic wave field simulation based on high-order staggered grid finite difference scheme[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 125-130. DOI: 10.3969/j.issn.1001-1986.2017.01.025
Citation: YUE Xiaopeng, BAI Chaoying, YUE Chongwang. Accuracy analysis of elastic wave field simulation based on high-order staggered grid finite difference scheme[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 125-130. DOI: 10.3969/j.issn.1001-1986.2017.01.025

Accuracy analysis of elastic wave field simulation based on high-order staggered grid finite difference scheme

Funds: 

National Youth Natural Science Foundation of China(41504090)

More Information
  • Received Date: January 22, 2016
  • Published Date: February 24, 2017
  • Seismic wavefield numerical simulation based on the staggered grids is widely used in seismic forward at present, there will be some differences in efficiency and accuracy by using different order difference scheme to simulate. In order to compare these differences, four kinds of difference formulas and coefficients of 4 order temporal and 2N order spatial of elastic wave equation are deduced, and the stability conditions of high order staggered grid under different difference schemes are calculated. The elastic wave field is simulated by using the four difference formulas and coefficients, and the results of wave field snapshot, synthetic seismogram and CPU time are compared and analyzed. The results shows that the staggered grid with accuracy of 4 order temporal and 6+6 orders spatial has high calculation precision and computational efficiency in numerical simulation of seismic wave field.
  • [1]
    MADARIAGA R. Dynamics of an expanding circular fault[J]. Bulletion of the Seismological Society America,1976,66(3):639-666.
    [2]
    VIRIEUX J. SH wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics,1984, 49(11):1933-1957.
    [3]
    VIRIEUX J. P-SV wave propagation in heterogeneous media:velocity-stress finite-difference method[J]. Geophysics,1986, 51(4):889-901.
    [4]
    LEVANDER A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics,1988,53(11):1425-1436.
    [5]
    GRAVERS R W. Simulating seismic wave propagation in 3D elastic media using staggered grid finite differences[J]. Bulletion of the Seismological Society America,1996,86(4):1091-1106.
    [6]
    董良国,马在田,曹景忠,等. 一阶弹性波方程交错网格高阶差分解法[J]. 地球物理学报,2000,43(3):411-419.

    DONG Liangguo,MA Zaitian,CAO Jingzhong,et al. The staggered-grid high-order difference method of one-order elastic equation[J]. Chinese Journal of Geophysics,2000,43(3):411-419.
    [7]
    王涛, 张亚. 各向同性层状介质高阶交错网格有限差分数值模拟[J]. 勘察科学技术,2015(5):30-33.

    WANG Tao, ZHANG Ya. Numerical simulation of staggered-grid high-order finite different in isotropic layered media[J]. Site Investigation Science and Technology,2015(5):30-33.
    [8]
    杨庆节,刘财,耿美霞,等. 交错网格任意阶导数有限差分格式及差分系数推导[J]. 吉林大学学报(地球科学版),2014, 44(1):375-385.

    YANG Qingjie,LIU Cai,GENG Meixia,et al. Staggered grid finite difference scheme and coefficients deduction of any number of derivatives[J]. Journal of Jilin University(Earth Science Edition),2014,44(1):375-385.
    [9]
    白亚东,冯志民,杨庆节. 交错网格高阶差分算法的改进[J]. 物探化探计算技术,2015,37(6):709-715.

    BAI Yadong,FENG Zhimin,YANG Qingjie. Improvement of staggered grid finite difference algorithm[J]. Computing Techniques for Geophysical and Geochemical Exploration,2015, 37(6):709-715.
    [10]
    刘洋,李承楚,牟永光. 任意偶数阶精度有限差分法数值模拟[J]. 石油地球物理勘探,1998,33(2):1-10.

    LIU Yang,LI Chengchu,MOU Yongguang. Finite-difference numerical modeling of any even-order accuracy[J]. Oil Geophysical Prospecting,1998,33(2):1-10.
    [11]
    LIU Yang,Mrinal K S. A practical implicit finite-difference method:Examples from seismic modeling[J]. Journal of Geophysics and Engineering,2009,6(3):231-249.
    [12]
    LIU Yang,MRINAL K S. Finite-difference modeling with adaptive variable-length spatial operators[J]. Geophysics,2011, 76(4):79-89.
    [13]
    董良国,马在田,曹景中. 一阶弹性波方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报,2000,43(6):856-864.

    DONG Liangguo,MA Zaitian,CAO Jingzhong. A study on stability staggered-grid high-order difference method of first elastic wave equation[J]. Chinese Journal of Geophysics,2000, 43(6):856-864.
    [14]
    唐小平, 白超英, 刘宽厚. 伪谱法分离波动方程弹性波模拟[J]. 石油地球物理勘探,2012,47(1):19-26.

    TANG Xiaoping,BAI Chaoying,LIU Kuanhou. Elastic wavefield simulation using separated equations through pseudo-spectral method[J]. Oil Geophysical Prospecting,2012,47(1):19-26.
    [15]
    PILANT W L. Elastic waves in the earth[M]. Amsterdam:Elsevier Press,1979:59-63.

Catalog

    Article Metrics

    Article views (53) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return