LIU Zhaoshun,DU Qizhen,LYU Wenhao,et al. Wavefield separation of P- and S-waves based on modified pseudo-Helmholtz decomposition operator in transverse isotropic media[J]. Coal Geology & Exploration,2023,51(3):131−142. DOI: 10.12363/issn.1001-1986.22.06.0477
Citation: LIU Zhaoshun,DU Qizhen,LYU Wenhao,et al. Wavefield separation of P- and S-waves based on modified pseudo-Helmholtz decomposition operator in transverse isotropic media[J]. Coal Geology & Exploration,2023,51(3):131−142. DOI: 10.12363/issn.1001-1986.22.06.0477

Wavefield separation of P- and S-waves based on modified pseudo-Helmholtz decomposition operator in transverse isotropic media

More Information
  • Received Date: June 14, 2022
  • Revised Date: October 24, 2022
  • Available Online: January 05, 2023
  • The separation of P- and S-wave fields is a significant step in elastic reverse-time migration (ERTM), which can effectively eliminate the waveform crosstalk and image artifacts, thus improving the precision of imaging. In anisotropic media, nonstationary spatial filters or low-rank approximation methods are commonly used to separate the wavefields. However, the application of multiple Fourier transforms results in the high computation costs of the above wavefield separation methods. Based on the idea of constructing the isotropic decoupling equations of P- and S- waves with the Helmholtz operator, a modified pseudo-Helmholtz decomposition operator was proposed to eliminate the amplitude distortion. Then, the expressions of shear and dilatational waves in transverse isotropic media were solved with the method of undetermined coefficients. Meanwhile, these expressions were converted into the first-order decoupled pseudo-elastic wave equations, so as to realize the wavefield decoupling of P- and S-waves in time and space. Through the wavefield separation test of the simple model, the separated P and S-wave fields were obtained, which verified the effectiveness of the method for wavefield separation. Furthermore, the vector P- and S-waves obtained by decoupling were applied to the elastic reverse time migration, and the clear imaging results of elastic reverse-time migration were obtained with the vector dot product cross-correlation imaging conditions. Thereby, it is indicated that this method is well applicable to the complex media. Meanwhile, it could be effectively applied to the elastic reverse-time migration of VTI media.

  • [1]
    BAYSAL E,KOSLOFF D D,SHERWOOD J W C. Reverse time migration[J]. Geophysics,1983,48(11):1514−1524. DOI: 10.1190/1.1441434
    [2]
    MCMECHAN G A. Migration by extrapolation of time–dependent boundary values[J]. Geophysical Prospecting,1983,31(3):413−420. DOI: 10.1111/j.1365-2478.1983.tb01060.x
    [3]
    WHITMORE N D. Iterative depth migration by backward time propagation[C]//SEG Technical Program Expanded Abstracts 1983. Society of Exploration Geophysicists, 1983: 382–385.
    [4]
    AKI K, RICHARDS P G. Quantitative seismology: Theory and methods[M]. San Francisco, CA: Freeman, 1980.
    [5]
    SUN R,MCMECHAN G A. Scalar reverse–time depth migration of prestack elastic seismic data[J]. Geophysics,2001,66(5):1519−1527. DOI: 10.1190/1.1487098
    [6]
    YAN Jia,SAVA P. Isotropic angle–domain elastic reverse–time migration[J]. Geophysics,2008,73(6):S229−S239. DOI: 10.1190/1.2981241
    [7]
    DU Qizhen,ZHU Yitong,BA Jing. Polarity reversal correction for elastic reverse time migration[J]. Geophysics,2012,77(2):S31−S41. DOI: 10.1190/geo2011-0348.1
    [8]
    DUAN Yuting,SAVA P. Scalar imaging condition for elastic reverse time migration[J]. Geophysics,2015,80(4):S127−S136. DOI: 10.1190/geo2014-0453.1
    [9]
    ZHU Hejun. Elastic wavefield separation based on the Helmholtz decomposition[J]. Geophysics,2017,82(2):S173−S183. DOI: 10.1190/geo2016-0419.1
    [10]
    YANG Jidong,ZHU Hejun,WANG Wenlong,et al. Isotropic elastic reverse time migration using the phase−and amplitude–corrected vector P– and S–wavefields[J]. Geophysics,2018,83(6):S489−S503. DOI: 10.1190/geo2018-0023.1
    [11]
    马德堂,朱光明. 弹性波波场 P 波和 S 波分解的数值模拟[J]. 石油地球物理勘探,2003,38(5):482−486. DOI: 10.3321/j.issn:1000-7210.2003.05.005

    MA Detang,ZHU Guangming. Numerical modeling of P–wave and S–wave separation in elastic wavefield[J]. Oil Geophysical Prospecting,2003,38(5):482−486. DOI: 10.3321/j.issn:1000-7210.2003.05.005
    [12]
    李振春,张华,刘庆敏,等. 弹性波交错网格高阶有限差分法波场分离数值模拟[J]. 石油地球物理勘探,2007,42(5):510−515. DOI: 10.3321/j.issn:1000-7210.2007.05.006

    LI Zhenchun,ZHANG Hua,LIU Qingmin,et al. Numeric simulation of elastic wavefield separation by staggering grid high–order finite–difference algorithm[J]. Oil Geophysical Prospecting,2007,42(5):510−515. DOI: 10.3321/j.issn:1000-7210.2007.05.006
    [13]
    XIAO Xiang,LEANEY W S. Local vertical seismic profiling (VSP) elastic reverse–time migration and migration resolution:Salt–flank imaging with transmitted P–to–S waves[J]. Geophysics,2010,75(2):S35−S49. DOI: 10.1190/1.3309460
    [14]
    DU Qizhen,GUO Chengfeng,ZHAO Qiang,et al. Vector–based elastic reverse time migration based on scalar imaging condition[J]. Geophysics,2017,82(2):S111−S127. DOI: 10.1190/geo2016-0146.1
    [15]
    TANG Chen,MCMECHAN G A. Multidirectional–vector–based elastic reverse time migration and angle–domain common–image gathers with approximate wavefield decomposition of P– and S–waves[J]. Geophysics,2018,83(1):S57−S79. DOI: 10.1190/geo2017-0119.1
    [16]
    DELLINGER J,ETGEN J. Wave–field separation in two–dimensional anisotropic media[J]. Geophysics,1990,55(7):914−919. DOI: 10.1190/1.1442906
    [17]
    YAN Jia,SAVA P. Elastic wave–mode separation for VTI media[J]. Geophysics,2009,74(5):WB19−WB32. DOI: 10.1190/1.3184014
    [18]
    ZHANG Qunshan,MCMECHAN G A. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media[J]. Geophysics,2010,75(3):D13−D26. DOI: 10.1190/1.3431045
    [19]
    CHENG Jiubing,FOMEL S. Fast algorithms for elastic−wave−mode separation and vector decomposition using low−rank approximation for anisotropic media[J]. Geophysics,2014,79(4):C97−C110. DOI: 10.1190/geo2014-0032.1
    [20]
    郭成锋. 横向各向同性介质声波与弹性波逆时偏移[D]. 青岛: 中国石油大学(华东), 2016.

    GUO Chengfeng. Study on acoustic and elastic reverse time migration in transversely isotropic media[D]. Qingdao: China University of Petroleum (East China), 2016.
    [21]
    ZHOU Yang,WANG Huazhong. Efficient wave–mode separation in vertical transversely isotropic media[J]. Geophysics,2017,82(2):C35−C47. DOI: 10.1190/geo2016-0191.1
    [22]
    LU Yongming,LIU Qiancheng,ZHANG Jianfeng,et al. Poynting and polarization vectors based wavefield decomposition and their application on elastic reverse time migration in 2D transversely isotropic media[J]. Geophysical Prospecting,2019,67(5):1296−1311. DOI: 10.1111/1365-2478.12777
    [23]
    WANG Wenlong,HUA Biaolong,MCMECHAN G A,et al. P– and S−decomposition in anisotropic media with localized low–rank approximations[J]. Geophysics,2018,83(1):C13−C26. DOI: 10.1190/geo2017-0138.1
    [24]
    YANG Jidong,ZHANG Houzhu,ZHAO Yang,et al. Elastic wavefield separation in anisotropic media based on eigenform analysis and its application in reverse–time migration[J]. Geophysical Journal International,2019,217(2):1290−1313. DOI: 10.1093/gji/ggz085
    [25]
    周进举,王德利,李博文,等. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版),2018,48(3):909−921. DOI: 10.13278/j.cnki.jjuese.20170319

    ZHOU Jinju,WANG Deli,LI Bowen,et al. Application of wavefield decomposition based on decoupled propagation in elastic RTM for VTI media[J]. Journal of Jilin University (Earth Science Edition),2018,48(3):909−921. DOI: 10.13278/j.cnki.jjuese.20170319
    [26]
    孔丽云,胡志方,王一博. 基于“方程解耦”算法的各向异性介质纵横波分离方法[J]. 地球物理学报,2022,65(7):2719−2728. DOI: 10.6038/cjg2022P0371

    KONG Liyun,HU Zhifang,WANG Yibo. Elastic wave–mode separation for anisotropic media based on equation–decoupling method[J]. Chinese Journal of Geophysics,2022,65(7):2719−2728. DOI: 10.6038/cjg2022P0371
    [27]
    DU Qizhen,GONG Xufei,ZHANG Mingqiang,et al. 3D PS–wave imaging with elastic reverse–time migration[J]. Geophysics,2014,79(5):S173−S184. DOI: 10.1190/geo2013-0253.1
    [28]
    WANG Wenlong,MCMECHAN G A. Vector–based elastic reverse time migration[J]. Geophysics,2015,80(6):S245−S258. DOI: 10.1190/geo2014-0620.1
    [29]
    THOMSEN L. Weak elastic anisotropy[J]. Geophysics,1986,51(10):1954−1966. DOI: 10.1190/1.1442051
    [30]
    李宾. 横向各向同性介质有限差分法波场模拟方法研究[D]. 青岛: 中国石油大学(华东), 2009.

    LI Bin. Finite difference numerical modeling of seismic wavefields in tansversely isotropic media with a vertical axis[D]. Qingdao: China University of Petroleum (East China), 2009.
  • Cited by

    Periodical cited type(25)

    1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 .
    2. 张雪莲. 潞安矿区矿井水害及防治措施分析. 华北自然资源. 2025(01): 14-16+20 .
    3. 连会青,晏涛,尹尚先,徐斌,康佳,周旺,闫国成. 基于透明水文地质模型的工作面顶板水害预警研究. 煤炭科学技术. 2025(01): 259-271 .
    4. 牛亚豪,王畅,刘佳佳. 基于高精度差分定位法的水文测量自动化报警系统设计. 自动化与仪器仪表. 2024(01): 231-234 .
    5. 苏雄,李小龙,贺杰伟. 基于三维GIS的煤矿数据集成自动化监测系统. 自动化与仪表. 2024(03): 121-125 .
    6. 郝宪杰,李航,赵毅鑫,杨怀翔,杨波,刘科峰,李宜家. 基于日累积微震指标与水位关联效应的底板突水预警方法与应用. 岩石力学与工程学报. 2024(09): 2125-2139 .
    7. 曾一凡,于超,武强,赵菱尔,尹尚先,张博成,刘泽洋,崔雅帅,阚雪冬,黄浩. 煤矿防治水“三区”划分方法及其水害防治意义. 煤炭学报. 2024(08): 3605-3618 .
    8. 宗伟琴. 煤矿水害监测预警GIS平台研发及应用. 能源科技. 2024(05): 28-33 .
    9. 姚有利,寇杰,张孟浩. 基于博弈论组合赋权-TOPSIS的煤矿“一通三防”风险评估. 矿业安全与环保. 2024(06): 71-78 .
    10. 赵群,郝韶嵩. 水害风险预警系统在皖北煤电集团的设计研究. 煤炭与化工. 2023(02): 33-37 .
    11. 丁莹莹,卜昌森,连会青,尹尚先,徐斌,张丐卓,姚辉,董其金. 基于仿真平台的矿井突水淹没路径和逃生路径规划. 煤矿安全. 2023(05): 20-26 .
    12. 董书宁. 人工智能技术在煤矿水害防治智能化发展中的应用. 煤矿安全. 2023(05): 1-12 .
    13. 袁利伟,龙皓楠,李斌,李延林,曹浪,辛岩. 基于HMM算法的矿山水灾害链复杂演化网络模型构建及应用. 化工矿物与加工. 2023(08): 47-55 .
    14. 曾一凡,武强,赵苏启,苗耀武,张晔,梅傲霜,孟世豪,刘晓秀. 我国煤矿水害事故特征、致因与防治对策. 煤炭科学技术. 2023(07): 1-14 .
    15. 尹尚先,徐斌,尹慧超,曹敏,丁莹莹,梁满玉. 矿井水防治学科基本架构及内涵. 煤炭科学技术. 2023(07): 24-35 .
    16. 邱浩,李宏杰,李文,李江华,杜明泽,姜鹏. 煤矿水害智能预警系统关键架构及模型研究. 煤炭科学技术. 2023(07): 197-206 .
    17. 李鑫,孙亚军,徐智敏,陈歌. 矿山采动突水危险源划分与致灾危险性评价研究. 煤炭工程. 2023(09): 108-115 .
    18. 张党育,武斌,贾靖,赵立松,李玉宝. 基于微震数据及模型的煤矿水害“双驱动”预警体系构建与应用. 煤炭科学技术. 2023(S1): 242-255 .
    19. 张志武. 高密度电阻率法在承压水导升高度探测中的应用. 煤. 2022(06): 71-72+95 .
    20. 宋容. 基于多层关联规则算法的煤矿突出预警模型. 能源与环保. 2022(06): 300-305 .
    21. 许进鹏,周宇,浦早红,庞思远. 离层积水量估算方法及离层突水预测——以陕西招贤煤矿1304工作面突水为例. 煤炭学报. 2022(08): 3083-3090 .
    22. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 .
    23. 卓聪志. 首采区域内上覆含水层的富水特征及采区涌水量计算. 山西化工. 2022(07): 112-114 .
    24. 隋旺华. 矿山安全地质学:综述. 工程地质学报. 2021(04): 901-916 .
    25. 薛峰峰. 低位岩巷穿层探放技术在采空区水害治理中的应用. 陕西煤炭. 2021(05): 155-158 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (210) PDF downloads (77) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return