LI Yu,WANG Jingqi,GUAN Jianbo,et al. Detection of near-surface cavities using the 2D multi-parameter full-waveform inversion of Rayleigh waves[J]. Coal Geology & Exploration,2023,51(7):162−173. DOI: 10.12363/issn.1001-1986.23.02.0064
Citation: LI Yu,WANG Jingqi,GUAN Jianbo,et al. Detection of near-surface cavities using the 2D multi-parameter full-waveform inversion of Rayleigh waves[J]. Coal Geology & Exploration,2023,51(7):162−173. DOI: 10.12363/issn.1001-1986.23.02.0064

Detection of near-surface cavities using the 2D multi-parameter full-waveform inversion of Rayleigh waves

More Information
  • Received Date: February 02, 2023
  • Revised Date: May 31, 2023
  • Available Online: July 02, 2023
  • The accurate detection of near-surface low-velocity anomalies (such as cavities), which has always been a valuable and challenging research topic in the field of geophysics, holds great significance for the fine-scale near-surface modeling in urban disaster assessment and the seismic exploration of coalfields under complex conditions. The full-waveform inversion (FWI) of surface waves is suitable for high-precision near-surface modeling. However, there still exist many urgent problems with the modeling in practical applications. To solve the key issues of the FWI of surface waves, such as multi-parameter crosstalk, actual data preprocessing, and source wavelet estimation, this study developed a complete method of multi-parameter FWI of Rayleigh waves to achieve the accurate detection of near-surface cavities. In this method, (1) the S- and P-wave velocities and density of the models were updated synchronously in the process of inversion, thus reducing the negative effects of the deviations of the P-wave velocity and density from their actual values on the accuracy of inverted S-wave velocities; (2) the quasi-Hessian operator constructed using the adjoint state method was employed to conduct gradient preprocessing in order to suppress surface artifacts, enhance wavefield illumination, and improve the characterization ability for small-scale anomalies; (3) to transform the 3D wave field into a 2D wave field, the convolutional factor was used to eliminate the dimension difference between the wavefield forward modeling and the actual data acquisition; (4) to reduce the influence of specific inaccurate parameter models, the corrected filtering method was used to dynamically estimate the source wavelets during the iterative process; (5) to improve the stability of the inversion, a multi-scale inversion strategy was adopted to alleviate the non-convexity of the objective function caused by low-velocity anomalies. The synthetic data and the test results of actual cases show that the models of the S- and P-wave velocities and the density developed using the multi-parameter FWI method of Rayleigh waves were roughly consistent, with the S-wave velocity model being the most accurate. The S-wave velocity model obtained through the inversion of measured data revealed a 4 m × 3 m artificial cavity, whose location and size are consistent with the actual situation. This result demonstrates the method proposed in this study features feasibility and effectiveness in the detection of near-surface cavities.

  • [1]
    戚志鹏,郭建磊,孙乃泉,等. 隧道瞬变电磁克希霍夫偏移成像与地质灾害探测[J]. 煤田地质与勘探,2022,50(5):129−135. DOI: 10.12363/issn.1001-1986.21.10.0583

    QI Zhipeng,GUO Jianlei,SUN Naiquan,et al. Geological structure detection with tunnel transient electromagnetic Kirchhoff 2D migration imaging[J]. Coal Geology & Exploration,2022,50(5):129−135. DOI: 10.12363/issn.1001-1986.21.10.0583
    [2]
    曾爱平,彭慧芳,吴豪杰,等. 浅层地震在薄层采空区探测技术研究实践[J]. 地球物理学进展,2022,37(6):2639−2647. DOI: 10.6038/pg2022EE0505

    ZENG Aiping,PENG Huifang,WU Haojie,et al. Research on shallow seismic technology in the detection of underground thin goaf in urban[J]. Progress in Geophysics,2022,37(6):2639−2647. DOI: 10.6038/pg2022EE0505
    [3]
    侯泽明,杨德义. 山西煤矿采区高密度三维地震勘探综述[J]. 煤田地质与勘探,2020,48(6):15−24. DOI: 10.3969/j.issn.1001-1986.2020.06.003

    HOU Zeming,YANG Deyi. Summary of high density 3D seismic exploration in the mining districts of coal mines in Shanxi Province[J]. Coal Geology & Exploration,2020,48(6):15−24. DOI: 10.3969/j.issn.1001-1986.2020.06.003
    [4]
    孟庆利,任俊兴,杨帆. 南川地区溶洞及采空区地震资料针对性处理方法[J]. 煤田地质与勘探,2021,49(3):205−211. DOI: 10.3969/j.issn.1001-1986.2021.03.026

    MENG Qingli,REN Junxing,YANG Fan. Targeted processing method for seismic data of karst caves and goafs in Nanchuan Area[J]. Coal Geology & Exploration,2021,49(3):205−211. DOI: 10.3969/j.issn.1001-1986.2021.03.026
    [5]
    李宇,杨德义,闫培. 一种快速建立层析反演初始模型的方法[J]. 煤田地质与勘探,2009,37(6):67−70. DOI: 10.3969/j.issn.1001-1986.2009.06.016

    LI Yu,YANG Deyi,YAN Pei. A method of creating quickly an initial model in tomography inversion[J]. Coal Geology & Exploration,2009,37(6):67−70. DOI: 10.3969/j.issn.1001-1986.2009.06.016
    [6]
    李宇,杨德义,邓辉,等. 初至旅行时层析反演近地表模型精度分析[J]. 石油地球物理勘探,2011,46(2):221−225. DOI: 10.13810/j.cnki.issn.1000-7210.2011.02.011

    LI Yu,YANG Deyi,DENG Hui,et al. Analysis on inversion accuracy of near–surface model inversed by first break traveltime tomography[J]. Oil Geophysical Prospecting,2011,46(2):221−225. DOI: 10.13810/j.cnki.issn.1000-7210.2011.02.011
    [7]
    PARK C B,MILLER R D,XIA Jianghai. Multichannel analysis of surface waves[J]. Geophysics,1999,64(3):800−808. DOI: 10.1190/1.1444590
    [8]
    XIA Jianghai,XU Yixian,LUO Yinhe,et al. Advantages of using multichannel analysis of Love waves (MALW) to estimate near−surface shear−wave velocity[J]. Surveys in Geophysics,2012,33(5):841−860. DOI: 10.1007/s10712-012-9174-2
    [9]
    SLOAN S D,NOLAN J J,BROADFOOT S W,et al. Using near–surface seismic refraction tomography and multichannel analysis of surface waves to detect shallow tunnels:A feasibility study[J]. Journal of Applied Geophysics,2013,99:60−65. DOI: 10.1016/j.jappgeo.2013.10.004
    [10]
    SHERMAN C S,RECTOR J,DREGER D,et al. A numerical study of surface wave based tunnel detection at the Black Diamond Mines regional preserve,California[J]. Geophysics,2018,83(4):EN13−EN22. DOI: 10.1190/geo2017-0467.1
    [11]
    杨智,李宇,赵飞,等. 面波多道分析法精细探测浅部煤层采空区应用研究[J]. 矿业科学学报,2022,7(1):113−122. DOI: 10.19606/j.cnki.jmst.2022.01.011

    YANG Zhi,LI Yu,ZHAO Fei,et al. Fine detection of shallow coal mined−out areas by multichannel analysis of surface waves[J]. Journal of Mining Science and Technology,2022,7(1):113−122. DOI: 10.19606/j.cnki.jmst.2022.01.011
    [12]
    SHAO Guangzhou,TSOFLIAS G P,LI Changjiang. Detection of near–surface cavities by generalized S–transform of Rayleigh waves[J]. Journal of Applied Geophysics,2016,129:53−65. DOI: 10.1016/j.jappgeo.2016.03.041
    [13]
    HU Shufan,ZHAO Yonghui,SOCCO L V,et al. Retrieving 2–D laterally varying structures from multistation surface wave dispersion curves using multiscale window analysis[J]. Geophysical Journal International,2021,227(2):1418−1438. DOI: 10.1093/gji/ggab282
    [14]
    TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,1984,49(8):1259−1266. DOI: 10.1190/1.1441754
    [15]
    MÉTIVIER L, BROSSIER R, VIRIEUX J, et al. The truncated Newton method for full waveform inversion[C]. SEG Technical Program Expanded Abstracts, 2012, 386: 012013.
    [16]
    MÉTIVIER L,BROSSIER R,VIRIEUX J,et al. Full waveform inversion and the truncated Newton method[J]. SIAM Journal on Scientific Computing,2013,35(2):B401−B437. DOI: 10.1137/120877854
    [17]
    GUAN Jianbo,LI Yu,LIU Guohua. Preconditioned conjugate gradient algorithm−based 2D waveform inversion for shallow−surface site characterization[J]. Shock and Vibration,2021,2021:3164358.
    [18]
    管建博,李宇,殷裁云,等. 基于拟Hessian梯度预处理算子的勒夫波全波形反演研究[J]. 煤田地质与勘探,2021,49(4):49−59. DOI: 10.3969/j.issn.1001-1986.2021.04.007

    GUAN Jianbo,LI Yu,YIN Caiyun,et al. Love wave full waveform inversion via Pseudo−Hessian gradient pre−conditioning operator[J]. Coal Geology & Exploration,2021,49(4):49−59. DOI: 10.3969/j.issn.1001-1986.2021.04.007
    [19]
    PAN Yudi,GAO Lingli,BOHLEN T. High−resolution characterization of near−surface structures by surface−wave inversions:From dispersion curve to full waveform[J]. Surveys in Geophysics,2019,40(2):167−195. DOI: 10.1007/s10712-019-09508-0
    [20]
    DOKTER E,KOHN D,WILKEN D,et al. Full–waveform inversion of SH– and Love–wave data in near–surface prospecting[J]. Geophysical Prospecting,2017,65(Sup.1):216−236.
    [21]
    PAN Yudi,XIA Jianghai,XU Yixian,et al. Love–wave waveform inversion in time domain for shallow shear−wave velocity[J]. Geophysics,2016,81(1):R1−R14. DOI: 10.1190/geo2014-0225.1
    [22]
    YAN Yingwei,WANG Zhejiang,LI Jing,et al. Elastic SH– and Love–wave full–waveform inversion for shallow shear wave velocity with a preconditioned technique[J]. Journal of Applied Geophysics,2020,173:103947. DOI: 10.1016/j.jappgeo.2020.103947
    [23]
    ALAM M I. Near surface characterization using traveltime and full waveform inversion with vertical and horizontal component seismic data[J]. Interpretation,2018,7(1):T141−T154.
    [24]
    MECKING R,KÖHN D,MEINECKE M,et al. Cavity detection by SH–wave full waveform inversion:A reflection–focused approach[J]. Geophysics,2021,86(3):WA123−WA137. DOI: 10.1190/geo2020-0349.1
    [25]
    GUAN Jianbo,LI Yu,JI Runjun,et al. Love wave full–waveform inversion for archaeogeophysics:From synthesis tests to a field case[J]. Journal of Applied Geophysics,2022,202:104653. DOI: 10.1016/j.jappgeo.2022.104653
    [26]
    CHEN Jianxiong,ZELT C A,JAISWAL P. Detecting a known near–surface target through application of frequency–dependent traveltime tomography and full–waveform inversion to P– and SH−wave seismic refraction data[J]. Geophysics,2017,82(1):R1−R17. DOI: 10.1190/geo2016-0085.1
    [27]
    TRAN K T,MCVAY M,FARAONE M,et al. Sinkhole detection using 2D full seismic waveform tomography[J]. Geophysics,2013,78(5):R175−R183. DOI: 10.1190/geo2013-0063.1
    [28]
    TRAN K T,LUKE B. Full waveform tomography to resolve desert alluvium[J]. Soil Dynamics & Earthquake Engineering,2017,99:1−8.
    [29]
    WANG Yao,MILLER R D,PETERIE S L,et al. Tunnel detection at Yuma Proving Ground,Arizona,USA. Part 1:2D full−waveform inversion experiment[J]. Geophysics,2018,84:1−44.
    [30]
    WITTKAMP F,ATHANASOPOULOS N,BOHLEN T. Individual and joint 2–D elastic full–waveform inversion of Rayleigh and Love waves[J]. Geophysical Journal International,2018,216(1):350−364.
    [31]
    PAN Yudi,GAO Lingli. Random objective waveform inversion of surface waves[J]. Geophysics,2020,85(4):EN49−EN61. DOI: 10.1190/geo2019-0613.1
    [32]
    TRAN K T,MIRZANEJAD M,MCVAY M,et al. 3D time–domain Gauss−Newton full waveform inversion for near–surface site characterization[J]. Geophysical Journal International,2019,217(1):206−218. DOI: 10.1093/gji/ggz020
    [33]
    MIRZANEJAD M,TRAN K T,MCVAY M,et al. Coupling of SPT and 3D full waveform inversion for deep site characterization[J]. Soil Dynamics and Earthquake Engineering,2020,136:106196. DOI: 10.1016/j.soildyn.2020.106196
    [34]
    PLESSIX R E. A review of the adjoint–state method for computing the gradient of a functional with geophysical applications[J]. Geophysical Journal International,2006,167(2):495−503. DOI: 10.1111/j.1365-246X.2006.02978.x
    [35]
    CASTELLANOS C, ETIENNE V, HU Guanghui, et al. Algorithmic and methodological developments towards full waveform inversion in 3D elastic media[C]//SEG Technical Program Expanded Abstracts, 2011.
    [36]
    SHIN C,JANG S,MIN D J. Improved amplitude preservation for prestack depth migration by inverse scattering theory[J]. Geophysical Prospecting,2001,49(5):592−606. DOI: 10.1046/j.1365-2478.2001.00279.x
    [37]
    VIRIEUX J. P–SV wave propagation in heterogeneous media:Velocity–stress finite–difference method[J]. Geophysics,1986,51(4):889−901. DOI: 10.1190/1.1442147
    [38]
    BUNKS C,SALECK F M,ZALESKI S,et al. Multiscale seismic waveform inversion[J]. Geophysics,1995,60(5):1457−1473. DOI: 10.1190/1.1443880
    [39]
    HU Yue,PAN Yudi,XIA Jianghai. Wavefield–separated full–waveform inversion of shallow–seismic Rayleigh waves[J]. Pure and Applied Geophysics,2022,179(5):1583−1596. DOI: 10.1007/s00024-022-02995-0
    [40]
    PARK C B, MILLER R D, XIA Jianghai. Imaging dispersion curves of surface waves on multi–channel record[C]//SEG Technical Program Expanded Abstracts, 1998: 1377–1380.
    [41]
    XIA Jianghai,MILLER R D,PARK C B. Estimation of near−surface shear−wave velocity by inversion of Rayleigh waves[J]. Geophysics,1999,64(3):691−700. DOI: 10.1190/1.1444578
    [42]
    GROOS L,SCHӒFER M,FORBRIGER T,et al. Application of a complete workflow for 2D elastic full–waveform inversion to recorded shallow–seismic Rayleigh waves[J]. Geophysics,2017,82(2):R109−R117. DOI: 10.1190/geo2016-0284.1

Catalog

    Article Metrics

    Article views (460) PDF downloads (89) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return