Citation: | MA Li,DU Su,ZHANG Zhaoyun,et al. Preparation and characteristics of inorganic curing foam with large-volume fly ash in goaf[J]. Coal Geology & Exploration,2023,51(2):243−251. DOI: 10.12363/issn.1001-1986.22.11.0872 |
Air leakage in the goaf of coal mine is an important cause of coal fire disaster. The traditional filling and plugging materials are easy to crack, with poor fluidity and high cost. Therefore, it is necessary to develop new materials for effective filling and plugging of the air leakage channels. Herein, the new filling and plugging material of inorganic curing foam with large-volume fly ash was developed by optimizing the mix ratio based on material fluidity, initial setting time and compressive strength using the single factor variable method. Meanwhile, the material hydration process was characterized by the infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the water based foam with sodium dodecyl sulfate (SDS)∶decyl glucoside (APG) of 1∶1 and xanthan gum (XG)∶guar gum (GG) of 1∶1 is selected based on the foam uniformity, foaming multiple, half-life and water separation rate. The initial setting time of the inorganic curing foam with large-volume fly ash is proportional to the amount of fly ash, water cement ratio and foam content. The fluidity is proportional to the water cement ratio water and iversely propotional to the amount of tlyash content based on the fluidity decreases with the increasing of fly ash content, and increases first and then decreases slowly with the increasing of foam content. The compressive strength of inorganic curing foam with large-volume fly ash increases first and then decreases with the increasing of fly ash content, but it is inversely proportional to the water cement ratio and foam content. According to the comprehensive evaluation indexes, the material fluidity is good at 15.9 cm, the initial setting time is moderate at 5 h, and the compressive strength is great, reaching 1.5 MPa at 28 d when the fly ash content was 60%, the water-ash ratio is 0.6, and the volume ratio of foam to composite slurry is 1:1. The hydration products of the material include ettringite (AFT) and C-S-H gel. The hydration reaction of cement first generates Ca(OH)2, and then the Ca(OH)2 reacts with fly ash to generate AFT and C-S-H gel, thereby improving the compressive strength of inorganic curing foam with high-volume fly ash, which is capable of satisfying the requirements leakage blocking in goaf.
[1] |
邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1−7.
DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1−7.
|
[2] |
李峰,刘鸿福,张新军,等. 基于分形理论确定地下煤层自燃火区范围[J]. 煤田地质与勘探,2013,41(3):15−17. DOI: 10.3969/j.issn.1001-1986.2013.03.004
LI Feng,LIU Hongfu,ZHANG Xinjun,et al. Determination of spontaneous combustion extent in coal seams on the basis of the fractal theory[J]. Coal Geology & Exploration,2013,41(3):15−17. DOI: 10.3969/j.issn.1001-1986.2013.03.004
|
[3] |
褚廷湘,余明高,杨胜强,等. 煤岩裂隙发育诱导采空区漏风及自燃防治研究[J]. 采矿与安全工程学报,2010,27(1):87−93. DOI: 10.3969/j.issn.1673-3363.2010.01.017
CHU Tingxiang,YU Minggao,YANG Shengqiang,et al. Air leaking induced by well developed coal fractures and prevention of spontaneous combustion in goaf[J]. Journal of Mining & Safety Engineering,2010,27(1):87−93. DOI: 10.3969/j.issn.1673-3363.2010.01.017
|
[4] |
王东江,杨胜强,刘松,等. 采空区漏风对煤自燃危险性的影响[J]. 煤矿安全,2011,42(5):129−132.
WANG Dongjiang,YANG Shengqiang,LIU Song,et al. Influence of air leakage in goaf on risk of coal spontaneous combustion[J]. Safety in Coal Mines,2011,42(5):129−132.
|
[5] |
宋博,王大鹏,李雨成,等. 基于不同漏风源浅埋煤层采空区自燃“三带”分布规律研究[J]. 中国安全生产科学技术,2022,18(6):38−44.
SONG Bo,WANG Dapeng,LI Yucheng,et al. Study on distribution law of spontaneous combustion “three zones” in goaf of shallow−buried coal seam based on different air leakage sources[J]. Journal of Safety Science and Technology,2022,18(6):38−44.
|
[6] |
尹征龙,张起,徐志辉,等. 聚合物水泥砂浆的研究进展与发展趋势[J]. 混凝土与水泥制品,2022(8):31−36. DOI: 10.19761/j.1000-4637.2022.08.031.06
YIN Zhenglong,ZHANG Qi,XU Zhihui,et al. Research progress and trends of polymer cement mortar[J]. China Concrete and Cement Products,2022(8):31−36. DOI: 10.19761/j.1000-4637.2022.08.031.06
|
[7] |
左希希,王斌,朱喜颖,等. 高分子凝胶三相泡沫发泡剂的优化及研究[J]. 消防科学与技术,2021,40(5):741−743. DOI: 10.3969/j.issn.1009-0029.2021.05.032
ZUO Xixi,WANG Bin,ZHU Xiying,et al. Optimization and study of three–phase foam foaming agent for polymer gel[J]. Fire Science and Technology,2021,40(5):741−743. DOI: 10.3969/j.issn.1009-0029.2021.05.032
|
[8] |
QIN Botao,LU Yi,LI Fanglei,et al. Preparation and stability of inorganic solidified foam for preventing coal fires[J]. Advances in Materials Science and Engineering,2014,2014:347386.
|
[9] |
王涛,鲁义,施式亮,等. 漏风裂隙内无机固化泡沫浆液扩散特性研究[J]. 中国安全科学学报,2019,29(10):24−30.
WANG Tao,LU Li,SHI Shiliang,et al. Research on diffusion properties of inorganic solidified foam slurry in air leakage fracture[J]. China Safety Science Journal,2019,29(10):24−30.
|
[10] |
雷瑞,付东升,李国法,等. 粉煤灰综合利用研究进展[J]. 洁净煤技术,2013,19(3):106−109.
LEI Rui,FU Dongsheng,LI Guofa,et al. Research progress of fly ash comprehensive utilization[J]. Clean Coal Technology,2013,19(3):106−109.
|
[11] |
茅沈栋,李镇,方莹. 粉煤灰资源化利用的研究现状[J]. 混凝土,2011(7):82−84. DOI: 10.3969/j.issn.1002-3550.2011.07.027
MAO Shendong,LI Zhen,FANG Ying. Current status of research on the utilization of fly ash[J]. Concrete,2011(7):82−84. DOI: 10.3969/j.issn.1002-3550.2011.07.027
|
[12] |
孙道胜,胡梅梅,王爱国,等. 大掺量粉煤灰高水充填材料的研制[J]. 硅酸盐通报,2016,35(4):1074−1079.
SUN Daosheng,HU Meimei,WANG Aiguo,et al. Research and preparation of high water filling material with high dosage of fly ash[J]. Bulletin of the Chinese Ceramic Society,2016,35(4):1074−1079.
|
[13] |
罗小博,宋彧,郭启明,等. 粉煤灰掺量对混凝土力学性能影响的试验研究[J]. 混凝土,2021(8):88−90. DOI: 10.3969/j.issn.1002-3550.2021.08.020
LUO Xiaobo,SONG Yu,GUO Qiming,et al. Experimental study of influence of the mechanical behavior about fly ash content on concrete[J]. Concrete,2021(8):88−90. DOI: 10.3969/j.issn.1002-3550.2021.08.020
|
[14] |
易欣,康付如,邓军,等. 矿用无机固化泡沫充填材料研究及应用[J]. 中国安全生产科学技术,2017,13(10):136−142.
YI Xin,KANG Furu,DENG Jun,et al. Research and application on inorganic solidified foam filling material for mine[J]. Journal of Safety Science and Technology,2017,13(10):136−142.
|
[15] |
JONES M R. High–volume,ultra–low–density fly ash foamed concrete[J]. Magazine of Concrete Research,2017,69(22):1146−1156. DOI: 10.1680/jmacr.17.00063
|
[16] |
YUAN Kekuo,GONG Yu,FU Shaojun,et al. Development of quick–solidifying foamed concrete for mine fires extinguishment and the basic performances tests[J]. Frontiers in Materials,2020,7:587998. DOI: 10.3389/fmats.2020.587998
|
[17] |
LU Yi,QIN Botao. Experimental investigation of closed porosity of inorganic solidified foam designed to prevent coal fires[J]. Advances in Materials Science and Engineering,2015,2015:724548.
|
[18] |
轩宇宁,倪晓芳,余锦涛. 常见二元表面活性剂复配体系对发泡能力的影响[J]. 华东理工大学学报(自然科学版),2022,48(4):449−455. DOI: 10.14135/j.cnki.1006-3080.20211217001
XUAN Yuning,NI Xiaofang,YU Jintao. Influence of common surfactant binary composite system on foamability[J]. Journal of East China University of Science and Technology (Natural Science Edition),2022,48(4):449−455. DOI: 10.14135/j.cnki.1006-3080.20211217001
|
[19] |
张群,裴梅山,张瑾,等. 十二烷基硫酸钠与两性表面活性剂复配体系表面性能及影响因素[J]. 日用化学工业,2006,36(2):69−72.
ZHANG Qun,PEI Meishan,ZHANG Jin,et al. Study of performance and its influencing factors of blends of sodium dodecyl sulfate and zwitterionic surfactants[J]. China Surfactant Detergent & Cosmetics,2006,36(2):69−72.
|
[20] |
李凯斌,刘彦峰,周春生,等. 不同稳泡剂对发泡水泥性能的影响[J]. 当代化工,2017,46(4):591−594.
LI Kaibin,LIU Yanfeng,ZHOU Chunsheng,et al. Effect of different foam stabilizers on the properties of foamed cement[J]. Contemporary Chemical Industry,2017,46(4):591−594.
|
[21] |
高鹤,王丽洁. 阴离子表面活性剂及其与稳泡剂协同作用对泡沫混凝土性能的影响[J]. 新型建筑材料,2020,47(2):137−140.
GAO He,WANG Lijie. Effects of anionic surfactant and its synergistic effect with foam stabilizer on foam concrete[J]. New Building Materials,2020,47(2):137−140.
|
[22] |
张文华,杨冯皓,吕毓静,等. 泡沫混凝土的稳泡措施和机理研究进展[J]. 硅酸盐学报,2021,49(10):2266−2275.
ZHANG Wenhua,YANG Fenghao,LYU Yujing,et al. Research progress on foam stabilization method and mechanism of foamed concrete[J]. Journal of the Chinese Ceramic Society,2021,49(10):2266−2275.
|
[23] |
李林香,谢永江,冯仲伟,等. 水泥水化机理及其研究方法[J]. 混凝土,2011(6):76−80.
LI Linxiang,XIE Yongjiang,FENG Zhongwei,et al. Cement hydration mechanism and research methods[J]. Concrete,2011(6):76−80.
|
[24] |
幸超群,邓怡帆,笪俊伟,等. 硅灰–粉煤灰复合矿物掺合料对混凝土性能的影响研究[J]. 新型建筑材料,2022,49(9):52−56. DOI: 10.3969/j.issn.1001-702X.2022.09.012
XING Chaoqun,DENG Yifan,DA Junwei,et al. Research on the influence of silica fume–fly ash composite mineral admixture on concrete performance[J]. New Building Materials,2022,49(9):52−56. DOI: 10.3969/j.issn.1001-702X.2022.09.012
|
[25] |
刘浩,戚文,张群,等. 不同温度条件下矿渣水泥的水化反应机理研究[J]. 新型建筑材料,2022,49(9):154−157.
LIU Hao,QI Wen,ZHANG Qun,et al. Study on hydration mechanism of slag cement at different temperatures[J]. New Building Materials,2022,49(9):154−157.
|
[26] |
赵文华,崔锋,刘鹏亮,等. 粉煤灰–脱硫石膏充填材料性能及微观结构研究[J]. 中国矿业,2022,31(9):132−138.
ZHAO Wenhua,CUI Feng,LIU Pengliang,et al. Study on properties and microstructure of fly ash–flue gas desulphurization gypsum filling material[J]. China Mining Magazine,2022,31(9):132−138.
|
[27] |
张涛,朱成. 水泥–硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J]. 硅酸盐通报,2022,41(3):903−912.
ZHANG Tao,ZHU Cheng. Strength,shrinkage performance and microstructure of cement–silica fume/fly ash system[J]. Bulletin of The Chinese Ceramic Society,2022,41(3):903−912.
|
[28] |
马越,周新涛,黄静,等. 矿物掺合料对磷酸镁水泥性能影响及机理研究现状[J]. 过程工程学报,2021,21(6):629−638.
MA Yue,ZHOU Xintao,HUANG Jing,et al. Research status of mineral admixtures on properties and mechanism of magnesium phosphate cement[J]. The Chinese Journal of Process Engineering,2021,21(6):629−638.
|
[1] | SUN Ru-hua, LI Wen-ping. Application of fractal theory on the structural distribution feature of deep buried clay[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(4): 54-56,61. |
[2] | CHEN Jiang-feng, WANG Zhen-fen, YAN Chun-zhong. Fractal description of roundness of clastic particles[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(4): 16-17. |
[3] | HE Jun, LIU Ming-ju. Simulation research on fractal features of fault distribution[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(1): 13-15. |
[4] | CHEN Jiang-feng, LIU Yong, ZHANG Guo-wang. Computer processing and fractal dimension calculation of natural water system[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 45-47. |
[5] | He Jun, Yuan Dongsheng, Liu Mingju, Zhang Zimin. FRACTAL PREDICTION RESEARCH ON COAL AND GAS OUTBURST ZONES[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(3): 31-33. |
[6] | Chen Jiangfeng. THE RELATIONSHIP BETWEEN FRACTAL DIMENSION OF FISSURE NETWORK AND PERMEABILITY[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(3): 50-52. |
[7] | Jiang Dong, Wang Jianhua, Chen Peipei, Sun Yajun, Zheng Shishu. FRACTAL EVALUATION OF FRACTURE STRUCTURE IN GUOJIAZHUANG MINE FIELD[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(2): 23-25. |
[8] | Su Xianbo, Tang Youyi, Shen Jiang, Ning Chao, Xong Mingfu, Li Fengjun. THE FRACTAL CHARACTERISTICS OF FRACTURES IN Ⅵ16-17COAL OF NO.5 MINE AND ITS IMPLICATION[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 28-31. |
[9] | Xu Zhibin, Xie Heping, Wang Jiyao. A FRACTAL MODEL FOR THE ESTIMATION OF ROCK FRACTURE SURFACE ROUGHNESS[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(1): 10-12,9. |
[10] | Zhang Yusan, Li Tairen, Kang Dianhai, Wei Hong. THE RELATIONSHIP BETWEEN FRACTAL DIMENSION OF ROCK TEXTURE AND COMPRESSIVE STRENGTH[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(3): 22-25. |
1. |
郭晶,张建国,贾慧敏,王琪,何珊,范秀波. 煤层气直井储层堵塞原因分析及解堵措施应用. 中国煤层气. 2024(03): 20-24 .
![]() | |
2. |
张晨,何萌,肖宇航,刘忠,韩晟,鲁秀芹,王子涵,吴浩宇,张倩倩. 影响煤层气单支压裂水平井产量关键要素及提产对策——以郑庄区块开发实践为例. 煤炭科学技术. 2024(10): 158-168 .
![]() | |
3. |
韩文龙,王延斌,李勇,倪小明,吴翔,赵石虎. 煤层气低产井区增产改造地质靶区优选方法与应用. 洁净煤技术. 2023(S2): 780-788 .
![]() | |
4. |
姜维,吴恒,王惠. 新疆准南地区煤层气井低产原因与增产措施研究. 中国煤层气. 2023(03): 9-12 .
![]() | |
5. |
李勇,胡海涛,王延斌,韩文龙,吴翔,吴鹏,刘度. 煤层气井低产原因及二次改造技术应用分析. 矿业科学学报. 2022(01): 55-70 .
![]() | |
6. |
张伟,周梓欣. 后峡盆地中部煤层气资源量预测. 内蒙古煤炭经济. 2022(08): 55-57 .
![]() | |
7. |
贾慧敏,胡秋嘉,张聪,张文胜,刘春春,毛崇昊,王岩. 煤层气双层合采直井产能预测及排采试验——以沁水盆地郑庄西南部为例. 油气藏评价与开发. 2022(04): 657-665 .
![]() | |
8. |
刘晓,崔彬,吴展. 煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例. 油气藏评价与开发. 2022(04): 626-632 .
![]() | |
9. |
胡秋嘉,贾慧敏,张聪,樊彬,毛崇昊,张庆. 高阶煤煤层气井稳产时间预测方法及应用——以沁水盆地南部樊庄-郑庄为例. 煤田地质与勘探. 2022(09): 137-144 .
![]() | |
10. |
侯安琪. 郑庄区块二次压裂煤层气井低产原因及改进措施. 煤. 2021(03): 16-19 .
![]() | |
11. |
李浩,梁卫国,李国富,白建平,王建美,武鹏飞. 碎软煤层韧性破坏-渗流耦合本构关系及其间接压裂工程验证. 煤炭学报. 2021(03): 924-936 .
![]() | |
12. |
信凯,季长江,魏若飞. 晋城矿区郑庄深部煤层L型水平井增产改造技术. 煤. 2021(04): 13-15+19+27 .
![]() | |
13. |
贾慧敏,胡秋嘉,樊彬,毛崇昊,张庆. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术. 煤田地质与勘探. 2021(02): 34-42 .
![]() | |
14. |
田跃儒,张双双,郑晓斌. 柳林区块煤层气压裂液评价及伤害机理研究. 煤炭技术. 2021(05): 69-71 .
![]() | |
15. |
赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 .
![]() | |
16. |
孙晗森. 我国煤层气压裂技术发展现状与展望. 中国海上油气. 2021(04): 120-128 .
![]() | |
17. |
彭丽莎,张毅敏,熊威,赵丹,罗凯. 四川筠连地区高阶煤煤层气井解堵技术及应用. 煤田地质与勘探. 2021(05): 132-138 .
![]() | |
18. |
程泽虎,袁航,匡玉凤. 织金区块煤层气排采制度对产气特征的影响. 中国煤层气. 2021(05): 14-18 .
![]() | |
19. |
原红超,贾慧敏,王汉雄,安玉敏,闻伟,蒋世民. 煤层气井产出水固体颗粒过滤装置及应用. 中国煤层气. 2020(03): 34-36 .
![]() | |
20. |
贾慧敏,胡秋嘉,毛建伟,毛崇昊,刘春春,张庆,刘昌平. 高阶煤煤层气井产量递减规律及影响因素. 煤田地质与勘探. 2020(03): 59-64+74 .
![]() | |
21. |
王镜惠,梅明华,刘娟,王华军. 煤储层酸化增渗影响因素及酸化压裂选井原则. 中国煤炭地质. 2020(05): 12-14+26 .
![]() | |
22. |
李莹,郑瑞,罗凯,朱延茗,张毅敏. 筠连地区煤层气低产低效井成因及增产改造措施. 煤田地质与勘探. 2020(04): 146-155 .
![]() | |
23. |
王镜惠,梅明华,刘娟,王华军. 基于突变理论的煤层气井产量预测研究. 当代化工. 2020(08): 1788-1792 .
![]() | |
24. |
王镜惠,尹宇寒,梅明华,刘娟,王华军. 高煤阶煤储层解吸曲线定量表征及解吸参数研究. 地质与勘探. 2020(05): 1096-1104 .
![]() | |
25. |
安省蓬. 煤层气低产井原因及下步改进方案研究. 现代盐化工. 2020(05): 53-54 .
![]() | |
26. |
刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测. 煤田地质与勘探. 2020(05): 204-210 .
![]() |