LI Dong-wei, WANG Ren-he, HU Pu. FEM analysis of transient freezing temperature field of frozen multi-wall tube[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 38-41.
Citation: LI Dong-wei, WANG Ren-he, HU Pu. FEM analysis of transient freezing temperature field of frozen multi-wall tube[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 38-41.

FEM analysis of transient freezing temperature field of frozen multi-wall tube

More Information
  • Received Date: March 14, 2006
  • Available Online: March 10, 2023
  • The artificial freezing temperature field is an unstable transient heat conduction phenomenon related to space and time,as well as phase changing. On the basis of a case study regarding freezing engineering project from a coal mine,Huainan,the frozen wall thickness,average temperature,freezing time of an oblique frozen tube are simulated using large-scale non-linear finite element computational procedure ADINA numerical simulator,resulting in the data coincided with site measured.The study demonstrated that the application of finite method analysis can predict the temperature field development of frozen tube wall,and it can provide reference data for performance of freezing engineering projects.
  • Related Articles

    [1]WU Yuwei, HU Jun, WANG Zhixin, ZENG Dongling, WANG Shucheng. Numerical analysis of temperature field of underwater dredging artificial frozen plate[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 168-176. DOI: 10.3969/j.issn.1001-1986.2019.02.026
    [2]LIN Bin, WANG Peng, HOU Haijie, LONG Yi. Development law of the multi-loop tube freezing temperature field in deep thick clay layer[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 135-141. DOI: 10.3969/j.issn.1001-1986.2018.04.022
    [3]WANG Xiaobin, HU Jun, JU Jun. 3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 102-106,111. DOI: 10.3969/j.issn.1001-1986.2017.04.018
    [4]ZHI Min. High-order implicit finite difference numerical simulation of acoustic wave equation[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 106-111. DOI: 10.3969/j.issn.1001-1986.2016.02.019
    [5]SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing. Numerical simulation of reversed ground-fissure cracking and extending in loess[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 47-50. DOI: 10.3969/j.issn.1001-1986.2009.05.011
    [6]NI Hong-mei, YANG Sheng-qi. Numerical simulation on size effect of rock material under uniaxial compression[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(5): 47-49.
    [7]ZHU Ji-yong, XU Guang-quan, GONG Gu-pei. Numerical simulation with effective reinforced area of dynamic consolidation[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 39-43.
    [8]Li Yulin, Yang Xilu, Chen Zhida, Yang Chenyong. LARGE DEFORMATION NUMERICAL MODELING OF HOMOGENOUS MUTI-LAYERS FOLDS[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(1): 4-6.
    [9]WEI Zhong-tao, LIU Huan-jie, MENG Jian. NUMERICAL SIMULATION ON COALBED METHANE DIFFUSION IN GEOHISTORY[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 19-24.
    [10]Luo Zujiang, Yang Xilu. COALBED METHANE RESERVOIR NUMERICAL SIMULATION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(2): 28-30.

Catalog

    Article Metrics

    Article views (42) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return