WANG Xiaobin, HU Jun, JU Jun. 3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 102-106,111. DOI: 10.3969/j.issn.1001-1986.2017.04.018
Citation: WANG Xiaobin, HU Jun, JU Jun. 3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 102-106,111. DOI: 10.3969/j.issn.1001-1986.2017.04.018

3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall

Funds: 

Science and Technology Project of Housing and Urban Ministry(2016-K5-060)

More Information
  • Received Date: January 09, 2016
  • Published Date: August 24, 2017
  • To investigate the thawing law of cement-improved cup-shaped frozen soil wall, this paper performs 3D numerical simulation on the melting temperature field of cement-improved cup-shaped frozen soil wall and presents a comprehensive study of various influential factors, namely, thermal conductivity, specific heat and latent heat of the temperature field. This study was based on the horizontal freezing reinforcement project of shield tunnel of Nanjing Metro Line 10. It was found that initial temperature has little effect on the thawing rate of freezing cement soil while the location of frozen soil had larger influence on it. During the thawing process, the temperature of non-frozen soil at the outer wall of 1 m frozen soil decreased in the beginning stage and then increased, but there was an constant decrease in the soil temperature at the outer wall of 3~7 m frozen soil. The thawing time prolonged with the decrease of thermal conductivity, the increase of latent heat and the specific heat capacity. The effect of specific heat capacity was mainly reflected in the heating stage and the latent heat had main impact on the phase change of frozen soil. Thermal conductivity affects not only the heating stage but also the phase change.
  • [1]
    秦爱芳,张亚,施昱而. 上海地铁隧道旁通道人工冻结法施工对周围环境的影响[J]. 四川建筑科学研究,2013,39(4):180-185.

    QIN Aifang,ZHANG Ya,SHI Yier. The affection of artificial freezing method construction to the surrouding environment to the subway tunnel in the soft soil area[J]. Sichuan Building Science,2013,39(4):180-185.
    [2]
    HU Jun,ZENG Hui,WANG Xiaobin. Numerical analysis of temperature field of cup-shaped frozen soil wall reinforcement at shield shaft[J]. Applied Mechanics and Materials,2013(341/342):1467-1471.
    [3]
    张婷,杨平. 人工冻结法在地铁建设中的应用与发展[J]. 森林工程,2012,28(6):74-78.

    ZHANG Ting,YANG Ping. The application and development of artificial freezing method in the subway construction[J]. Forest Engineering,2012,28(6):74-78.
    [4]
    李阳,李栋伟,陈军浩. 人工冻结黏土冻胀特性试验研究[J]. 煤炭工程,2015,47(2):126-129.

    LI Yang,LI Dongwei,CHEN Junhao. Experimental research on frost heave of artificial frozen clay[J]. Coal Engineering,2015,47(2):126-129.
    [5]
    王效宾,杨平,王海波,等. 冻融作用对黏土力学性能影响的试验研究[J]. 岩土工程学报,2009,31(11):1768-1772.

    WANG Xiaobin,YANG Ping,WANG Haibo,et al. Experimental study on effects of freezing and thawing on mechanical properties of clay[J]. Chinese Journal of Geotechnical Engineering,2009,31(11):1768-1772.
    [6]
    王伸远,李栋伟. 不同冷端温度大荷载条件下土的冻胀特性试验研究[J]. 煤炭工程,2015,47(4):93-95.

    WANG Shenyuan,LI Dongwei. Experimental study on frost heave characteristics of soil in different cold junction temperature under large load[J]. Coal Engineering,2015,47(4):93-95.
    [7]
    王效宾,杨平,胡俊. 人工冻土融沉对地层位移场影响的三维有限元分析[J]. 煤田地质与勘探,2011,39(6):54-57.

    WANG Xiaobin,YANG Ping,HU Jun. A numerical simulation study on ground displacement field of thaw-settlement in artificial freezing soil[J]. Coal Geology & Exploration,2011,39(6):54-57.
    [8]
    鲍俊安,杨平,张翔宇. 水泥土融沉特性的试验研究[J]. 南京林业大学学报(自然科学版),2013,37(5):97-102.

    BAO Jun'an,YANG Ping,ZHANG Xiangyu. Experimental study on thaw subsidence properties of cement-improved soil[J]. Journal of Nanjing Forestry University(Natural Science Edition),2013,37(5):97-102.
    [9]
    鲍俊安,杨平,王许诺. 水泥土冻胀特性试验研究[J]. 郑州大学学报,2013,34(1):5-9.

    BAO Jun'an,YANG Ping,WANG Xunuo. Experimental study on frost heave properties of cement-improved soil[J]. Journal of Zhengzhou University(Engineering Science),2013,34(1):5-9.
    [10]
    王许诺,杨平,鲍俊安,等. 冻结水泥土无侧限抗压试验研究[J]. 水文地质工程地质,2013,40(3):79-83.

    WANG Xunuo,YANG Ping,BAO Junan,et al. Test research on unconfined compressive strength of freezing cement soil[J]. Hydrogeology & Engineering Geology,2013,40(3):79-83.
    [11]
    张旭辉,杨平,张翔宇,等. 水泥土加固法冻胀抑制效应数值模拟[J]. 地下空间与工程学报,2015,11(5):1344-1350.

    ZHANG Xuhui,YANG Ping,ZHANG Xiangyu,et al. Numerical simulation on frost heave inhibitory effect of cemented soil[J]. Chinese Journal of Underground Space and Engineering,2015,11(5):1344-1350.
    [12]
    胡俊. 水泥改良前后土体冻结温度及力学特性试验研究[J]. 铁道建筑,2013(4):156-159.

    HU Jun. Experimental study on freezing temperature and mechanical performance of soil before and after ce-ment-improving[J]. Railway Engineering,2013(4):156-159.
    [13]
    吴璋,王晓东,武光辉,等. 井筒冻结孔解冻涌水发生机制及其控制技术[J]. 煤田地质与勘探,2015,43(1):35-42.

    WU Zhang,WANG Xiaodong,WU Guanghui,et al. Mechanism and control technology of water inrush from shaft freezing holes after thawing[J]. Coal Geology & Exploration,2015,43(1):35-42.
    [14]
    王许诺,杨平,彭玉龙. 水泥土冻结温度及热物理参数试验研究[J]. 武汉理工大学学报,2012,34(6):96-100.

    WANG Xunuo,YANG Ping,PENG Yulong. Test research to freezing point and the thermal physical parameters of freezing cement soil[J]. Journal of Wuhan University of Technology,2012,34(6):96-100.
    [15]
    王杰,杨平,张翔宇,等. 水平冻结水泥土加固盾构洞门温度场敏感性分析[J]. 南京林业大学学报(自然科学版),2013,37(3):145-151.

    WANG Jie,YANG Ping,ZHANG Xiangyu,et al. Sensitivity study of soil thermal field in horizontal freezing shield portal reinforced by cement[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2013,37(3):145-151.
  • Related Articles

    [1]GAN Zhihui, SHANG Hui, DU Rongjun, ZHAN Huizhu. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 158-166. DOI: 10.3969/j.issn.1001-1986.2021.03.020
    [2]WANG Yongguo, WANG Ming, XU Peng. Characteristics of collapsed fractured zone development of No.3-1 seam roof in Bayangaoler coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 37-42. DOI: 10.3969/j.issn.1001-1986.2019.S1.007
    [3]SUN Siqing, ZHENG Kaige. Numerical simulation study on permeability enhancement effect of high pressure water cutting coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 45-49. DOI: 10.3969/j.issn.1001-1986.2017.02.008
    [4]JIA Xiaoliang, CUI Hongqing, ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 47-51. DOI: 10.3969/j.issn.1001-1986.2010.04.011
    [5]GAO Sheng-xiang, YE Rong-zhang, TANG Wei-li, XU Qing, HE Jin-qiang. Establishment of complex geological body FLAC3D model by using MATLAB interface program[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 51-53. DOI: 10.3969/j.issn.1001-1986.2009.05.012
    [6]LI Rong-wei, HOU En-ke, LIU Tian-lin. Stability analysis of combined slope in open-pit coal based on 3D numerical simulation[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 43-46,51.
    [7]LU Dun-hua, HE Zhong-ming, LIN Hang. Numerical analysis for grouting effect in jointed slope by FLAC3D[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 45-48.
    [8]YANG Chang-bin, ZHANG Sheng-yun, XU Jiang-bo, LIU Gui-ying, YANG Jian-cheng, LIU Zhao. FLAC3D program and its applications in couple problem between primary support design and rock wall condition in double-arch tunnel[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(5): 49-52.
    [9]XU Pei-hua, CHEN Jian-ping, HUANG Run-qiu, YAN Ming. Analyses of 3D numerical simulation of toppling deformation mechanism of Jiefanggou left slope in Jingping Step 1 hydropower station[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 40-43.
    [10]ZHU Ji-yong, XU Guang-quan, GONG Gu-pei. Numerical simulation with effective reinforced area of dynamic consolidation[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 39-43.
  • Cited by

    Periodical cited type(19)

    1. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
    2. 高阳. 熵权耦合聚类法在奥灰岩溶水系统径流带划分中的应用. 华北自然资源. 2023(04): 61-63 .
    3. 李军,张波. 基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价. 煤炭技术. 2023(09): 195-199 .
    4. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 .
    5. 万松,范祝连,邓双,卞阿娜. 基于GIS的山地生态县域生态敏感性研究——以闽侯县为例. 南方林业科学. 2022(02): 58-63 .
    6. 姚辉,尹尚先,徐维,张润畦,蒋知廷. 基于组合赋权的加权秩和比法的底板突水危险性评价. 煤田地质与勘探. 2022(06): 132-137 . 本站查看
    7. 郑剑英. 基于综合赋权的煤层底板突水危险性评价. 工矿自动化. 2022(08): 140-146 .
    8. 黄家远. 基于IFAHP-熵权法的煤矿瓦斯防治系统安全评价. 中国矿山工程. 2022(04): 9-15 .
    9. 左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 .
    10. 尹会永,周鑫龙,郎宁,张历峰,王明丽,吴焘,李鑫. 基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用. 煤田地质与勘探. 2021(06): 175-185 . 本站查看
    11. 黄欢,朱宏军. 基于“富水性指数法”的煤层顶板含水层涌水危险性评价. 煤矿安全. 2020(02): 192-196 .
    12. 施龙青,张荣遨,韩进,丛培章,秦道霞,郭玉成. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价. 河南理工大学学报(自然科学版). 2020(03): 17-25 .
    13. 韩承豪,魏久传,谢道雷,徐建国,张伟杰,赵智超. 基于集对分析-可变模糊集耦合法的砂岩含水层富水性评价——以宁东矿区金家渠井田侏罗系直罗组含水层为例. 煤炭学报. 2020(07): 2432-2443 .
    14. 刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价. 矿业研究与开发. 2020(11): 83-88 .
    15. 董丽丽,费城,张翔,曹超凡. 基于LSTM神经网络的煤矿突水预测. 煤田地质与勘探. 2019(02): 137-143 . 本站查看
    16. 王志刚,付小锦,梁杰,曹健,江胜国. 天津静海含煤区无井式煤炭地下气化选址地质评价模型. 煤田地质与勘探. 2019(03): 41-48 . 本站查看
    17. 刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术. 煤田地质与勘探. 2019(05): 9-15 . 本站查看
    18. 霍丙杰,解振华,范张磊,荆雪冬. 陷落柱渗流突水机理及强度主控因素模拟. 煤田地质与勘探. 2019(06): 84-91 . 本站查看
    19. 胡今朝,林雨佳. 层次分析法在矿山地质环境检测中的应用. 世界有色金属. 2018(22): 276-277 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (129) PDF downloads (4) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return