WANG Xiaobin, HU Jun, JU Jun. 3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 102-106,111. DOI: 10.3969/j.issn.1001-1986.2017.04.018
Citation: WANG Xiaobin, HU Jun, JU Jun. 3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 102-106,111. DOI: 10.3969/j.issn.1001-1986.2017.04.018

3D numerical simulation of melting temperature field of cement-improved soil cup-shaped frozen soil wall

Funds: 

Science and Technology Project of Housing and Urban Ministry(2016-K5-060)

More Information
  • Received Date: January 09, 2016
  • Published Date: August 24, 2017
  • To investigate the thawing law of cement-improved cup-shaped frozen soil wall, this paper performs 3D numerical simulation on the melting temperature field of cement-improved cup-shaped frozen soil wall and presents a comprehensive study of various influential factors, namely, thermal conductivity, specific heat and latent heat of the temperature field. This study was based on the horizontal freezing reinforcement project of shield tunnel of Nanjing Metro Line 10. It was found that initial temperature has little effect on the thawing rate of freezing cement soil while the location of frozen soil had larger influence on it. During the thawing process, the temperature of non-frozen soil at the outer wall of 1 m frozen soil decreased in the beginning stage and then increased, but there was an constant decrease in the soil temperature at the outer wall of 3~7 m frozen soil. The thawing time prolonged with the decrease of thermal conductivity, the increase of latent heat and the specific heat capacity. The effect of specific heat capacity was mainly reflected in the heating stage and the latent heat had main impact on the phase change of frozen soil. Thermal conductivity affects not only the heating stage but also the phase change.
  • [1]
    秦爱芳,张亚,施昱而. 上海地铁隧道旁通道人工冻结法施工对周围环境的影响[J]. 四川建筑科学研究,2013,39(4):180-185.

    QIN Aifang,ZHANG Ya,SHI Yier. The affection of artificial freezing method construction to the surrouding environment to the subway tunnel in the soft soil area[J]. Sichuan Building Science,2013,39(4):180-185.
    [2]
    HU Jun,ZENG Hui,WANG Xiaobin. Numerical analysis of temperature field of cup-shaped frozen soil wall reinforcement at shield shaft[J]. Applied Mechanics and Materials,2013(341/342):1467-1471.
    [3]
    张婷,杨平. 人工冻结法在地铁建设中的应用与发展[J]. 森林工程,2012,28(6):74-78.

    ZHANG Ting,YANG Ping. The application and development of artificial freezing method in the subway construction[J]. Forest Engineering,2012,28(6):74-78.
    [4]
    李阳,李栋伟,陈军浩. 人工冻结黏土冻胀特性试验研究[J]. 煤炭工程,2015,47(2):126-129.

    LI Yang,LI Dongwei,CHEN Junhao. Experimental research on frost heave of artificial frozen clay[J]. Coal Engineering,2015,47(2):126-129.
    [5]
    王效宾,杨平,王海波,等. 冻融作用对黏土力学性能影响的试验研究[J]. 岩土工程学报,2009,31(11):1768-1772.

    WANG Xiaobin,YANG Ping,WANG Haibo,et al. Experimental study on effects of freezing and thawing on mechanical properties of clay[J]. Chinese Journal of Geotechnical Engineering,2009,31(11):1768-1772.
    [6]
    王伸远,李栋伟. 不同冷端温度大荷载条件下土的冻胀特性试验研究[J]. 煤炭工程,2015,47(4):93-95.

    WANG Shenyuan,LI Dongwei. Experimental study on frost heave characteristics of soil in different cold junction temperature under large load[J]. Coal Engineering,2015,47(4):93-95.
    [7]
    王效宾,杨平,胡俊. 人工冻土融沉对地层位移场影响的三维有限元分析[J]. 煤田地质与勘探,2011,39(6):54-57.

    WANG Xiaobin,YANG Ping,HU Jun. A numerical simulation study on ground displacement field of thaw-settlement in artificial freezing soil[J]. Coal Geology & Exploration,2011,39(6):54-57.
    [8]
    鲍俊安,杨平,张翔宇. 水泥土融沉特性的试验研究[J]. 南京林业大学学报(自然科学版),2013,37(5):97-102.

    BAO Jun'an,YANG Ping,ZHANG Xiangyu. Experimental study on thaw subsidence properties of cement-improved soil[J]. Journal of Nanjing Forestry University(Natural Science Edition),2013,37(5):97-102.
    [9]
    鲍俊安,杨平,王许诺. 水泥土冻胀特性试验研究[J]. 郑州大学学报,2013,34(1):5-9.

    BAO Jun'an,YANG Ping,WANG Xunuo. Experimental study on frost heave properties of cement-improved soil[J]. Journal of Zhengzhou University(Engineering Science),2013,34(1):5-9.
    [10]
    王许诺,杨平,鲍俊安,等. 冻结水泥土无侧限抗压试验研究[J]. 水文地质工程地质,2013,40(3):79-83.

    WANG Xunuo,YANG Ping,BAO Junan,et al. Test research on unconfined compressive strength of freezing cement soil[J]. Hydrogeology & Engineering Geology,2013,40(3):79-83.
    [11]
    张旭辉,杨平,张翔宇,等. 水泥土加固法冻胀抑制效应数值模拟[J]. 地下空间与工程学报,2015,11(5):1344-1350.

    ZHANG Xuhui,YANG Ping,ZHANG Xiangyu,et al. Numerical simulation on frost heave inhibitory effect of cemented soil[J]. Chinese Journal of Underground Space and Engineering,2015,11(5):1344-1350.
    [12]
    胡俊. 水泥改良前后土体冻结温度及力学特性试验研究[J]. 铁道建筑,2013(4):156-159.

    HU Jun. Experimental study on freezing temperature and mechanical performance of soil before and after ce-ment-improving[J]. Railway Engineering,2013(4):156-159.
    [13]
    吴璋,王晓东,武光辉,等. 井筒冻结孔解冻涌水发生机制及其控制技术[J]. 煤田地质与勘探,2015,43(1):35-42.

    WU Zhang,WANG Xiaodong,WU Guanghui,et al. Mechanism and control technology of water inrush from shaft freezing holes after thawing[J]. Coal Geology & Exploration,2015,43(1):35-42.
    [14]
    王许诺,杨平,彭玉龙. 水泥土冻结温度及热物理参数试验研究[J]. 武汉理工大学学报,2012,34(6):96-100.

    WANG Xunuo,YANG Ping,PENG Yulong. Test research to freezing point and the thermal physical parameters of freezing cement soil[J]. Journal of Wuhan University of Technology,2012,34(6):96-100.
    [15]
    王杰,杨平,张翔宇,等. 水平冻结水泥土加固盾构洞门温度场敏感性分析[J]. 南京林业大学学报(自然科学版),2013,37(3):145-151.

    WANG Jie,YANG Ping,ZHANG Xiangyu,et al. Sensitivity study of soil thermal field in horizontal freezing shield portal reinforced by cement[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2013,37(3):145-151.
  • Cited by

    Periodical cited type(7)

    1. 金修伟,鹿庆蕊,李栋伟,陈士军,张海军,洪进锋. 水泥土地层冻融温度场全过程发展影响研究. 森林工程. 2024(03): 184-196 .
    2. 金修伟,鹿庆蕊,李栋伟,陈士军,洪进锋,王秋哲. 注浆-冻结联合工法加固地铁隧道地表融沉特性研究. 冰川冻土. 2024(04): 1440-1452 .
    3. 费鸿禄,甄帅,李文焱,胡刚,聂寒. 高原多年含水冻岩爆破炮孔温度-水分场耦合分析. 爆破. 2022(04): 32-43 .
    4. 黄建华,严耿明,杨鹿鸣. 水泥改良土地层联络通道冻结温度场分析. 土木工程学报. 2021(05): 108-116 .
    5. 陈军浩,庄言,陈笔尖,赵振伟,王启云. 滨海软土冻结温度场发展规律. 煤田地质与勘探. 2020(04): 174-182 . 本站查看
    6. 黄建华,杨鹿鸣,王蕴晨. 水泥改良土地层人工冻结温度场的特性. 福建工程学院学报. 2020(04): 307-313 .
    7. 黄建华,杨鹿鸣,王蕴晨. 水泥改良对地层冻结温度场影响分析. 科学技术与工程. 2020(27): 11308-11314 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (131) PDF downloads (4) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return