LI Chaofeng, HU Weiyue, WANG Yunhong, LIU Yingfeng, ZHOU Linsheng. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 101-107. DOI: 10.3969/j.issn.1001-1986.2018.01.018
Citation: LI Chaofeng, HU Weiyue, WANG Yunhong, LIU Yingfeng, ZHOU Linsheng. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 101-107. DOI: 10.3969/j.issn.1001-1986.2018.01.018

Comprehensive detection technique for coal seam roof water flowing fractured zone height

Funds: 

The National Key Research and Development Program of China(2017YFC0804106)

More Information
  • Received Date: May 30, 2017
  • Published Date: February 24, 2018
  • Heights of roof strata "two-zone" should be measured for each new coal mine. To determine water flowing fracture zone height of the first mining face roof in Gaojiabu coal mine comprehensively, three methods including injection water leakage measuring in upward slant holes, underground-ground joint microseismic monitoring and numerical simulation with UDEC were applied. Similar fracture zone height values which are 88.03 m, 86.54 m and 87.00 m were detected by three methods near the working face stop line. Combined with injection water leakage measurement in underground upward slant hole or surface borehole, strata deformation and failure time-space four dimensional characteristics can be monitored by the underground-ground joint microseismic method which has outstanding advantages in analyzing the changing rule of the fracture zone height.
  • [1]
    国家煤矿安全监察局. 煤矿防治水规定释义[M]. 徐州:中国矿业大学出版社,2009.
    [2]
    虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005.
    [3]
    许家林. 岩层采动裂隙演化规律与应用[M]. 徐州:中国矿业大学出版社,2016.
    [4]
    白利民,尹尚先,李文. 综采一次采全高顶板导水裂缝带发育高度的计算公式及适用性分析[J]. 煤田地质与勘探,2013, 41(5):36-39.

    BAI Limin,YIN Shangxian,LI Wen. Calculation formula of water conducting zone height in roof for fully mechanized mining and its adaptability analysis[J]. Coal Geology & Exploration, 2013,41(5):36-39.
    [5]
    刘英锋,郭小铭. 导水裂缝带部分波及顶板含水层条件下涌水量预测[J]. 煤田地质与勘探,2016,44(5):97-101.

    LIU Yingfeng,GUO Xiaoming. Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Geology & Exploration,2016,44(5):97-101.
    [6]
    武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013.
    [7]
    王双美. 导水裂缝带高度研究方法概述[J]. 水文地质工程地质, 2006,33(5):126-128.

    WANG Shuangmei. A brief review of the methods determining the height of permeable fracture zone[J]. Hydrogeology & Engineering Geology,2006,33(5):126-128.
    [8]
    吕玉广,张雁. 国内导水裂缝带研究现状及发展趋势[J]. 煤矿现代化,2013(2):101-104.

    LYU Yuguang,ZHANG Yan. Research status and development trend of water-flowing fractured zone[J]. Coal Mine Modernization,2013(2):101-104.
    [9]
    张唤兰,朱光明,王保利. 微地震震源定位中目标函数的研究与应用[J]. 煤田地质与勘探,2015,43(6):105-108.

    ZHANG Huanlan,ZHU Guangming,WANG Baoli. Study and application of objective function in microseismic source location[J]. Coal Geology & Exploration,2015,43(6):105-108.
    [10]
    段建华,程建远,王云宏,等. 基于STA/LTA方法的微地震事件自动识别技术[J]. 煤田地质与勘探,2015,43(1):76-80.

    DUAN Jianhua,CHENG Jianyuan,WANG Yunhong,et al. Automatic identification technology of microseismic event based on STA/LTA algorithm[J]. Coal Geology & Exploration,2015, 43(1):76-80.
    [11]
    余学义,王金东,赵兵朝. 机械化开采条件下导水裂缝带发育高度研究[J]. 煤炭工程,2015,47(9):86-89.

    YU Xueyi,WANG Jindong,ZHAO Bingchao. Research on height of water flowing fractured zone under mechanized mining[J]. Coal Engineering,2015,47(9):86-89.
    [12]
    邢延团,郑纲,马培智. 井下仰孔注水测漏法探测导水裂缝带高度的研究[J]. 煤田地质与勘探,2004,32(增刊1):186-190.

    XING Yantuan,ZHENG Gang,MA Peizhi. Exploring the water-transmit crevice developing height with injection water leakage in the upward slant hole[J]. Coal Geology & Exploration, 2004,32(S1):186-190.
    [13]
    余学义,刘俊,赵兵朝,等. 孟巴矿特厚煤层分层开采覆岩导水裂缝带高度测定[J]. 煤矿安全, 2013, 44(8):169-171.

    YU Xueyi,LIU Jun,ZHAO Bingchao,et al. Determination on the height of slice mining overburden rock water flowing fractured zone of extremely thick coal seams in Barapukuria coal mine of Bangladesh[J]. Safety in Coal Mines,2013,44(8):169-171.
    [14]
    余学义,刘俊,王鹏,等. 特厚煤层分层开采导水裂缝带高度探测研究[J]. 中州煤炭,2013(7):4-7.

    YU Xueyi,LIU Jun,WANG Peng,et al. Exploring research on height of water flowing fractured zone of extremely thick coal seams to slice mining[J]. Zhong Zhou Coal,2013(7):4-7.
    [15]
    范志胜,程敏. 应用井下仰孔分段注水观测导水断裂带高度[J]. 矿业安全与环保,2010,37(6):75-77.

    FAN Zhisheng,CHENG Min. Using the method of injection water leakage in the upward slant hole to determinate height of water flowing fractured zone[J]. Mining Safety & Environmental Protection,2010,37(6):75-77.
    [16]
    李文生,李文,尹尚先. 综采一次采全高顶板导水裂缝带发育高度研究[J]. 煤炭科学技术,2012,40(6):104-107.

    LI Wensheng,LI wen,YIN Shangxian. Study on development height of water flow crack zone in roof above fully mechanized one passing full seam mining face[J]. Coal Science and Technology,2012,40(6):104-107.
    [17]
    MENDECKI A J. Seismic monitoring in mines[M]. London:Chapman and Hall,1997.
    [18]
    郝育喜,李化敏,袁瑞甫,等. 煤柱稳定性的微震监测研究[J]. 煤炭工程,2012,44(11):64-67.

    HAO Yuxi,LI Huamin,YUAN Ruifu,et al. Study on micro seismic monitoring and measuring of coal pillar stability[J]. Coal Engineering,2012,44(11):64-67.
    [19]
    吕长国,窦林名,何江,等. 遗留煤柱影响区域微震活动规律研究[J]. 煤炭工程,2011,43(1):78-81.

    LYU Changguo,DOU Linming,HE Jiang,et al. Study on micro seismic activity law of area affected by left coal pillars[J]. Coal Engineering,2011,43(1):78-81.
    [20]
    高保彬,高佳佳,袁东升. 基于UDEC的大采高覆岩破裂的模拟与分析[J]. 湖南科技大学学报(自然科学版),2013,28(2):1-6.

    GAO Baobin,GAO Jiajia,YUAN Dongsheng. Simulation and analysis of overlying strata fracture in large mining height top-coal caving face of coal seams based on UDEC[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2013,28(2):1-6.
    [21]
    李振峰,靳晓敏. 应用UDEC进行顶板"三带"范围划分的数值模拟研究[J]. 矿业安全与环保,2015,42(4):21-24.

    LI Zhenfeng,JIN Xiaomin. Numerical simulation research on scope division of "three zones" in roof with UDEC[J]. Mining Safety & Environmental Protection,2015,42(4):21-24.
  • Related Articles

    [1]LI Quangui, PENG Shuyue, LIANG Yunpei, LI Wenxi, QIAN Yanan, CHENG Chunhui, YU Changjun, ZHAN Jinfei. Microseismic monitoring and assessment of segmented hydraulic fracturing of horizontal wells in coal seam roofs[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 46-57. DOI: 10.12363/issn.1001-1986.25.01.0053
    [2]ZHANG Yin, LI Jiajun, ZHAO Qian, YANG Chenchen, LIU Jiaqi, ZHOU Yu. Application of microseismic monitoring in the optimization of control strategy for roofs composed of composite hard sandstone masses[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(12): 179-189. DOI: 10.12363/issn.1001-1986.24.04.0248
    [3]FAN Xin, CHENG Jianyuan, LI Sheng, DUAN Jianhua, FAN Tao, LI Bofan, WANG Yanbo. Application of microseismic monitoring system for coal mines to the prevention and control of water disasters on working face roofs[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(6): 115-127. DOI: 10.12363/issn.1001-1986.24.03.0230
    [4]HOU Enke, FAN Jichao, XIE Xiaoshen, LONG Tianwen, ZHANG Huanlan, WANG Jianhui, FAN Zhigang. Development characteristics of water-conducting fractured zone in deep coal seam based on microseismic monitoring[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 89-96. DOI: 10.3969/j.issn.1001-1986.2020.05.011
    [5]DUAN Jianhua. Integrated monitoring technology of water inrush from coal seam floor and its application[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 19-28. DOI: 10.3969/j.issn.1001-1986.2020.04.003
    [6]DUAN Jianhua, YAN Wenchao, NAN Hanchen, ZHANG Qingqing, FAN Xin. Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 208-213,220. DOI: 10.3969/j.issn.1001-1986.2020.01.028
    [7]YAN Jiangping, PANG Changqing, DUAN Jianhua, DUAN Jianqiang, BAI Xiaoyan. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 92-97. DOI: 10.3969/j.issn.1001-1986.2019.S1.018
    [8]LOU Gaozhong, GUO Wenbing, GAO Jinlong. Prediction of the height of water flowing fractured zone under subcritical mining based on dimensional analysis[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 147-153. DOI: 10.3969/j.issn.1001-1986.2019.03.023
    [9]LI Chaofeng. Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 129-136. DOI: 10.3969/j.issn.1001-1986.2019.02.020
    [10]LI Feng-qin, ZHANG Xing-min, JIANG Fu-xing. Microseismic monitoring system and application in underground coal mine[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 68-70.
  • Cited by

    Periodical cited type(51)

    1. 史可良,黄浩聪,王天辰. 银星一号井18_(上1)煤层开采覆岩“两带”高度综合探测研究. 煤. 2024(02): 66-69 .
    2. 范相如,李宪国,许峰,黄欢,李运江,马鹏,高树磊,韩杰. 安定组地层渗透性变化下的覆岩白垩系含水层涌水规律研究. 能源与环保. 2024(01): 141-146+153 .
    3. 蔺成森,任邓君,王青振,李超峰,王敬喻,黄鹤飞,刘强. 高家堡井田二盘区导水裂隙带高度实测研究. 煤炭技术. 2024(04): 209-212 .
    4. 屈少波,马仪鹏,郭国强,周杨. 榆树坡煤矿5~#煤首采工作面两带发育高度研究. 煤炭技术. 2024(06): 114-119 .
    5. 马军前. 伊犁矿区弱胶结覆岩导水裂缝带发育高度探测. 当代化工研究. 2024(12): 43-45 .
    6. 王峰,杨焱钧,王江平,范继超. 澄合矿区导水裂隙带发育高度多元线性回归方法预测. 陕西煤炭. 2024(07): 162-165 .
    7. 李建林,薛杨,王心义,徐博博,郭水涛. 基于模糊综合评价的导水通道超前探查判识技术. 煤炭科学技术. 2024(07): 178-186 .
    8. 彭洪涛,章俊,张二伟,杨彩,郝升明,段建东,陈洋洋. 工作面顶板导水两带发育高度动态监测研究. 煤. 2024(10): 6-9+83 .
    9. 孙斌杨,袁亮,张平松,吴荣新. 巨厚砾岩下采场覆岩运移与离层演化的光-电感知试验研究. 中国矿业大学学报. 2024(05): 977-992 .
    10. 靳伟民. 防塌孔护管在软弱覆岩仰孔探测中的优化应用. 能源技术与管理. 2024(05): 137-139 .
    11. 刘卓然,杨运琦. 微山湖矿区中硬顶板下导水裂隙带发育高度研究. 能源技术与管理. 2024(05): 134-136+194 .
    12. 靳德武,李超峰,刘英锋,曹海涛,任邓君,王红亮,张金魁,黄阳,杨国栋,郭康,樊敏,刘宸铠. 黄陇煤田煤层顶板水害特征及其防控技术. 煤田地质与勘探. 2023(01): 205-213 . 本站查看
    13. 李全生,李晓斌,张凯,曹志国,郭俊廷,阎跃观,张村,徐祝贺,赵勇强. 基于“空天地”一体化技术的岩层采动损伤监测与应用. 煤炭学报. 2023(01): 402-413 .
    14. 梁北援,常力,房大志,甘宇,张军,王建立,冯彦军,王文光,郭炳平,杜明,王会卿,扬英才. 微地震及其监测综述——走向基于低信噪比的微破裂向量扫描. 地球物理学进展. 2023(01): 47-75 .
    15. 刘潇韩,徐智敏,袁慧卿. 张双楼煤矿坚硬顶板覆岩破坏电法监测研究. 煤炭科技. 2023(01): 59-63 .
    16. 孟佳乐,杨本水. 基于FLAC 3D的五沟煤矿松散含水层注浆改造数值模拟. 湖北理工学院学报. 2023(04): 36-40 .
    17. 程磊,罗辉,李辉,张玥. 近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展. 科学技术与工程. 2022(01): 28-38 .
    18. 李全生,李晓斌,许家林,徐祝贺,张村. 岩层采动裂隙演化规律与生态治理技术研究进展. 煤炭科学技术. 2022(01): 28-47 .
    19. 吴铁卫. 内蒙古门克庆煤矿导水裂隙带高度探测及发育规律. 中国煤炭地质. 2022(05): 55-58+65 .
    20. 黄海鱼,丁湘,吴永辉,刘溪. 鄂尔多斯盆地北部中侏罗统沉积相特征及其对中深部矿井涌水量的影响. 西北大学学报(自然科学版). 2022(03): 508-518 .
    21. 胡博文,张冀鲁,王振华,齐浩. 采动裂隙演化研究进展及对含水层结构影响浅析. 地下水. 2022(03): 9-12 .
    22. 刘瑞瑞,刘洋,方刚,梁向阳,黄浩,刘晨光. 袁大滩煤矿覆岩破坏规律及顶板水害防治对策. 煤矿安全. 2022(07): 82-91 .
    23. 赵刚,成小雨,尉瑞. 高强综放开采覆岩破断与瓦斯涌出微震响应规律及应用. 中国矿业. 2022(09): 124-131 .
    24. 张彪. 彬长矿区巨厚顶板水减水思路与技术对策. 煤炭科技. 2022(04): 146-151 .
    25. 曹帅. 彬长矿区导水裂缝带观测方法综合对比分析. 能源与环保. 2021(05): 145-151+164 .
    26. 李超峰. 黄陇煤田综放采煤导水裂隙带高度经验公式. 煤炭技术. 2021(06): 119-122 .
    27. 来兴平,张旭东,单鹏飞,崔峰,刘伯伟,白瑞. 厚松散层下三软煤层开采覆岩导水裂隙发育规律. 岩石力学与工程学报. 2021(09): 1739-1750 .
    28. 娄高中,谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测. 煤田地质与勘探. 2021(04): 198-204 . 本站查看
    29. 马骥,蔺成森,王青振. 高家堡矿井煤层顶板原生裂缝带分布. 山东煤炭科技. 2021(10): 200-202+211+218 .
    30. 吴荣新,吴茂林,曹建富,张平松. 厚松散层薄基岩坚硬顶板工作面覆岩破坏电法监测. 煤炭科学技术. 2020(01): 239-245 .
    31. 张文斌,吴基文,翟晓荣,胡儒,毕尧山,王广涛. 闭坑矿井矿界煤柱采动损伤及其安全性评价. 工矿自动化. 2020(02): 39-44 .
    32. 崔峰,贾冲,来兴平,曹建涛,单鹏飞. 缓倾斜冲击倾向性顶板特厚煤层重复采动下覆岩两带发育规律研究. 采矿与安全工程学报. 2020(03): 514-524 .
    33. 曹祖宝,王庆涛. 基于覆岩结构效应的导水裂隙带发育特征. 煤田地质与勘探. 2020(03): 145-151 . 本站查看
    34. 赵贺. 井工一矿19109工作面陷落柱治理研究. 煤炭技术. 2020(09): 22-26 .
    35. 高振宇,闫江平,庞长庆. 多煤层重复采动覆岩“两带”高度探测技术研究. 能源科技. 2020(07): 33-38 .
    36. 张玉鹏,张玉军,刘毅涛,宋业杰,赵秋阳. 蒙西深部厚煤层大采高综采面覆岩破坏高度研究. 中国安全科学学报. 2020(08): 37-43 .
    37. 李响,魏久传,张伟杰,郜普涛,杨飞,周文武. 基于微震监测和现场实测的煤层顶板导水裂缝带发育高度研究. 中国科技论文. 2020(09): 1031-1037 .
    38. 吴荣新,曹建富. 工作面覆岩破坏双孔并行电法数据多方法处理. 安徽理工大学学报(自然科学版). 2020(04): 1-7+12 .
    39. 张玉军. 控水采煤技术原理、关键技术及在砂岩含水层下综放开采实践. 煤炭学报. 2020(10): 3380-3388 .
    40. 张玉军,张志巍. 煤层采动覆岩破坏规律与控制技术研究进展. 煤炭科学技术. 2020(11): 85-97 .
    41. 王云宏,王保利,段建华. 基于差分进化算法的微震定位. 煤田地质与勘探. 2019(01): 168-173+180 . 本站查看
    42. 李超峰,虎维岳,刘英锋. 洛河组含水层垂向差异性研究及保水采煤意义. 煤炭学报. 2019(03): 848-857 .
    43. 李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征. 煤田地质与勘探. 2019(02): 129-136 . 本站查看
    44. 赵高博,郭文兵,娄高中,马志宝. 基于覆岩破坏传递的导水裂缝带发育高度研究. 煤田地质与勘探. 2019(02): 144-150 . 本站查看
    45. 李智学,申小龙,李明培,王红胜. 榆神矿区最上可采煤层赋存规律及开采危害程度. 煤田地质与勘探. 2019(03): 130-139 . 本站查看
    46. 娄高中,郭文兵,高金龙. 基于量纲分析的非充分采动导水裂缝带高度预测. 煤田地质与勘探. 2019(03): 147-153 . 本站查看
    47. 王青振,任邓君,邢介波. 巨厚承压含水层精细化勘探方法研究. 煤炭技术. 2019(07): 92-94 .
    48. 李金龙,张允强,徐新启,黄辅强. 高家堡煤矿煤层顶板注浆加固堵水技术探讨. 煤田地质与勘探. 2019(S1): 20-25 . 本站查看
    49. 黄浩,方刚,梁向阳. 呼吉尔特矿区侏罗系深埋煤层导水断裂带发育高度研究. 煤矿安全. 2019(10): 22-28 .
    50. 候恩科,范继超,龙天文,张杰. 微震监测导水裂隙带研究现状及其展望. 内蒙古煤炭经济. 2019(22): 202-204+223 .
    51. 翟晓荣,吴基文,王广涛,毕尧山,胡杰. 基于MODFLOW的闭坑矿井水位回升预测. 煤田地质与勘探. 2018(S1): 27-32 . 本站查看

    Other cited types(22)

Catalog

    Article Metrics

    Article views (417) PDF downloads (46) Cited by(73)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return