LI Chaofeng. Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 129-136. DOI: 10.3969/j.issn.1001-1986.2019.02.020
Citation: LI Chaofeng. Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 129-136. DOI: 10.3969/j.issn.1001-1986.2019.02.020

Characteristics of height of water flowing fractured zone caused during ful-ly-mechanized caving mining in Huanglong coalfield

Funds: 

The National Key R&D Program of China(2017YFC0804106)

More Information
  • Received Date: September 22, 2018
  • Published Date: April 24, 2019
  • In order to study the law of height of water flowing fractured zone caused by fully-mechanized caving mining in Huanglong coalfield, this paper has systematically collected the measured data in the region, and methods of mathematical statistics and regression analysis were used to study the relationship among the height of water flowing fractured zone, width of working face, depth of coal seam and height of coal mining. The results show that:When the width of working face was less than 240 m and the height of coal mining was 8.5 to 9.5 m, the height of water flowing fractured zone under the soft stratum was always greater than that under the medium-hard stratum. When the width of working face was greater than 90 m and the height of coal mining was more than 14.5 m, the height of water flowing fractured zone under the soft stratum was always smaller than that under the medium-hard stratum. The height of water flowing fractured zone under the soft stratum and its ratio were both a single-peak curve with a maximum value as the height of coal mining increases. The height of water flowing fractured zone was a cubic function of the height of coal mining, and the ratio was a quadratic function of the height of coal mining. The maximum height was 239.97 m while the height of coal mining was 10.41 m, and the maximum ratio was 30.63 while the height of coal mining was 3.56 m. The height of water flowing fractured zone under the medium-hard stratum was affected by both the width of working face and the height of coal mining. When the width of working face was constant, the ratio of fractured zone height and mining height decreased gradually with the increase of mining height, and the change became more and more smaller, tended approximately to range from 11.00 to 14.30. When the height of coal mining was constant, the ratio increased with the width of working face. The height of the water flowing fracture zone increased with the width of the working face and the height of the coal mining.
  • [1]
    刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431-435.

    LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi'an University of Science and Technology,2013,33(4):431-435.
    [2]
    李超峰,张学如. 矿井涌水模式及顶板水害防治关键技术[J]. 煤炭技术,2018,37(6):153-156.

    LI Chaofeng,ZHANG Xueru. Mode of water inflow of mine and key technologies of controlling and preventing wa-ter-inrush from roof[J]. Coal Technology,2018,37(6):153-156.
    [3]
    李超峰. 彬长矿区巨厚洛河组垂向差异性研究[J]. 煤炭技术,2018,37(4):131-133.

    LI Chaofeng. Vertical differences of thick Luohe Formation in Binchang mining area[J]. Coal Technology,2018,37(4):131-133.
    [4]
    国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
    [5]
    虎维岳. 矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005.
    [6]
    刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970-1976.

    LIU Yingfeng,WANG Shidong,WANG Xiaolei. De-velopment characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.
    [7]
    郭小铭,刘英锋,李超峰. 强冲击矿压矿井综放开采覆岩破坏规律研究[J]. 矿业安全与环保,2018,45(3):24-28.

    GUO Xiaoming,LIU Yingfeng,LI Chaofeng. Study on rule of overburden failure under strong rock burst and fully mechanized caving mining[J]. Mining Safety & Environmental Protection,2018,45(3):24-28.
    [8]
    李超峰,虎维岳,王云宏,等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探,2018,46(1):101-107.

    LI Chaofeng,HU Weiyue,WANG Yunhong,et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration,2018,46(1):101-107.
    [9]
    冯洁,王苏健,陈通,等. 生态脆弱矿区土层中导水裂缝带发育高度研究[J]. 煤田地质与勘探,2018,46(1):97-100.

    FENG Jie,WANG Sujian,CHEN Tong,et al. Height of water flowing fractured zone of soil layer in the ecologically fragile mining area[J]. Coal Geology & Exploration,2018,46(1):97-100.
    [10]
    尹尚先,徐斌,徐慧,等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术,2013,41(9):138-142.

    YIN Shangxian,XU Bin,XU Hui,et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013,41(9):138-142.
    [11]
    武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013.
    [12]
    许家林. 岩层采动裂隙演化规律与应用[M]. 徐州:中国矿业大学出版社,2016.
    [13]
    许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380-385.

    XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380-385.
    [14]
    许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769.

    XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.
    [15]
    滕永海. 综放开采导水裂缝带的发育特征与最大高度计算[J]. 煤炭科学技术,2011,39(4):118-120.

    TENG Yonghai. Development features and max height calculation of water conducted fractured zone caused by fully mechanized top coal caving mining[J]. Coal Science and Technology,2011,39(4):118-120.
    [16]
    许延春,李俊成,刘世奇,等. 综放开采覆岩"两带"高度的计算公式及适用性分析[J]. 煤矿开采,2011,16(2):4-11.

    XU Yanchun,LI Juncheng,LIU Shiqi,et al. Calculation formula of "Two-Zone" height of overlying strata and its adaptability analysis[J]. Coal Mining Technology,2011,16(2):4-11.
  • Related Articles

    [1]RONG Hai, HAN Yongliang, ZHANG Hongwei, XIN Jinxin, CAO Yu, LAN Tianwei. Characteristics of in-situ stress field and stability analysis of roadway in Hongqingliang coal mine[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 144-151. DOI: 10.3969/j.issn.1001-1986.2020.05.018
    [2]SHI Xiuchang, JU Yuanjiang, MENG Zhaoping. Characteristics of in-situ stress field in Xinji coal mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 64-67. DOI: 10.3969/j.issn.1001-1986.2014.06.013
    [3]HE Shaopan, LIN Qing, ZHANG Chaoju, ZHANG Yugui. Ground stress field characteristics and their influence on coal and gas outburst in Qidong well field[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(2): 9-13. DOI: 10.3969/j.issn.1001-1986.2014.02.002
    [4]CHENG Jun, ZHANG Lihong, WU Guodai, LIU Jingqing, LIU Zixuan. Relationship between tectonic stress field and coal/gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 1-4,11. DOI: 10.3969/j.issn.1001-1986.2012.04.001
    [5]HAN Jun, ZHANG Hong-wei. Characteristic of in-situ stress field in Huainan mining area[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 17-21.
    [6]KONG Fan-shun, SUN Ru-hua, LI Wen-ping. Research and analysis of in-situ stress field on Pengzhuang mining field[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 14-17.
    [7]ZHANG Hong, ZHENG Yu-zhu, ZHENG Gao-sheng, WANG Sheng-zu. Extensional structure under the Fufeng-nappe in Huainan Coalfield, Anhui Province, and its formative mechanism[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 1-4.
    [8]Wang Diqing, Wu Tianmeng. THE APPLICATION OF 3-D SEISMIC EXPLORATION IN AREA COVERED BY HIGH-SPEED MAPPE[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(3): 49-54.
    [9]Li Guichun. AN EXPLORATION INTO THE Ω-SHAPED STRUCTURE UNDER THE FU-FENG NAPPE,HUAINAN[J]. COAL GEOLOGY & EXPLORATION, 1993, 21(4): 9-13.
    [10]Liu Tianlin, Li Tao. ON THE NAPPE STRUCTURE AND ITS APPLICATION TO COAL FIELD PROGNOSTICATION IN THE ADJACENT REGION OF XINGLONG MINING AREA[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(6): 1-7.
  • Cited by

    Periodical cited type(20)

    1. 李建林,薛杨,王心义,徐博博,郭水涛. 基于模糊综合评价的导水通道超前探查判识技术. 煤炭科学技术. 2024(07): 178-186 .
    2. 白怀东,范玉海,冯喜珍. 无线电波透视法在何家塔煤矿50106工作面的应用. 能源与节能. 2023(05): 1-5 .
    3. 王铮,易洪春. 无线电波透视技术在工作面隐伏地质构造探测中的应用. 煤炭与化工. 2023(06): 59-63 .
    4. 王庆. 准格尔矿区煤矿井下水害综合防治技术. 煤矿安全. 2021(06): 104-108 .
    5. 刘卫卫. 定向钻探在工作面电法异常探查中的应用. 煤炭技术. 2021(07): 75-77 .
    6. 侯海龙. 无线电波坑道透视技术在煤矿综采工作面的应用. 能源与节能. 2021(09): 182-184+186 .
    7. 孙全业. 唐家会煤矿复杂地质条件下智能化建设探索与实践. 中国煤炭. 2021(S1): 69-78 .
    8. 宋永,覃觅觅. 电磁精细探测法在隐伏型导水地质裂缝勘探中的应用. 水利水电技术. 2020(02): 184-191 .
    9. 冀前辉,郝世俊,王程,刘卫卫. 复合勘探技术在煤矿工作面水害防治中的应用. 工矿自动化. 2020(03): 79-83 .
    10. 江微娜. 无线电波透视探查地质异常区的应用与分析. 能源与环保. 2020(03): 61-65 .
    11. 张志伟. 短工作面陷落柱无线电波透视探测研究及应用. 能源与环保. 2020(04): 92-96 .
    12. 窦文武,卫金善,焦阳,杨高峰,吉泽宇. 矿井分布式地震超前探测系统研究与应用. 煤田地质与勘探. 2020(02): 228-234 . 本站查看
    13. 王振环. 浅析复合勘探技术在煤矿工作面水害中的应用. 当代化工研究. 2020(14): 92-93 .
    14. 王龙成,杨高峰. YDT88坑透仪在回采工作面陷落柱探测中的应用. 煤炭科技. 2020(04): 116-118 .
    15. 杨高峰,卫金善,杨新亮,窦文武. YDT88无线电波透视仪在地质异常体探测中的应用. 陕西煤炭. 2020(06): 131-134 .
    16. 蒋庆丰,吴茂林. 无线电波透视法在张集煤矿1122(1)工作面探测中的应用. 绿色科技. 2019(02): 159-160+182 .
    17. 牟义. 综采工作面带压区域电磁波CT探测小构造技术. 煤矿安全. 2019(12): 69-75 .
    18. 郝海涛. 无线电波坑道透视仪在煤矿生产中的应用. 科学技术创新. 2018(08): 185-186 .
    19. 袁鹏. 井间电磁探测技术正演模拟计算. 科学技术创新. 2017(20): 62-63 .
    20. 李德山. 井间电磁波层析成像技术应用进展. 科学技术创新. 2017(20): 1-2 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (126) PDF downloads (19) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return