YAN Jiangping, PANG Changqing, DUAN Jianhua, DUAN Jianqiang, BAI Xiaoyan. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 92-97. DOI: 10.3969/j.issn.1001-1986.2019.S1.018
Citation: YAN Jiangping, PANG Changqing, DUAN Jianhua, DUAN Jianqiang, BAI Xiaoyan. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 92-97. DOI: 10.3969/j.issn.1001-1986.2019.S1.018

Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors

Funds: 

National Key R&D Program of China(2017YFC0804103-3)

More Information
  • Received Date: July 14, 2019
  • Published Date: September 19, 2019
  • Hydraulic fracturing is an important technology for increasing permeability and productivity in the process of CBM development. The influence range of fracturing is directly related to the design and optimization of hydraulic fracturing scheme. As one of the key technologies, monitoring the sweep range of underground hydraulic fracturing in coal seam is a difficult technical problem to be solved urgently. In order to obtain the influence range of underground hydraulic fracturing in coal seam, according to the physical characteristics of coal seam and surrounding rock during fracturing, microseismic monitoring of fracturing influence range of three boreholes in a coal mine was carried out by using underground microseismic monitoring technology. The traditional borehole observation method was used to verify the monitoring results. The results show that the underground microseismic monitoring technology can obtain the fracturing damage range, but the fracturing damage range delineated by microseismic monitoring is smaller than that by borehole observation method. It is due to the soft coal seam and the large attenuation of seismic wave. The fractured surrounding rock or coal seam is seriously fractured, which is not conducive to the generation and expansion of fractures. So there fewer microseismic events are received.
  • [1]
    张子敏,王佑贵. 瓦斯地质规律与瓦斯预测[M]. 北京:煤炭工业出版社,2005:67-90.
    [2]
    俞启香. 矿井瓦斯防治[M]. 徐州:中国矿业大学出版社,1992:126-138.
    [3]
    李安启,姜海,陈彩虹. 我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J]. 天然气工业,2004,24(5):91-94.

    LI Anqi,JIANG Hai,CHEN Caihong. Hydraulic fracturing practice and coalbed fracture model selecting for coalbed gas wells in China[J]. Natural Gas Industry,2004,24(5):91-94.
    [4]
    徐刚,彭苏萍,邓绪彪. 煤层气井水力压裂压力曲线分析模型及应用[J]. 中国矿业大学学报,2011,40(2):173-178.

    XU Gang,PENG Suping,DENG Xubiao. Hydraulic fracturing pressure curve analysis and its application to coalbed methane wells[J]. Journal of China University of Mining and Technology,2011,40(2):173-178.
    [5]
    任建刚,宋志敏,刘高峰,等. 煤层气井压裂对井下瓦斯抽采量与涌出浓度影响研究[J]. 煤炭工程,2013,45(11):96-98.

    REN Jiangang,SONG Zhimin,LIU Gaofeng,et al. Study on fracturing of coal bed methane well affected to has drainage value and gas emission concentration in underground mine[J]. Coal Engineering,2013,45(11):96-98.
    [6]
    康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953-1959.

    KANG Hongpu,FENG Yanjun. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society,2012,37(12):1953-1959.
    [7]
    朱海波,杨心超,王瑜,等. 水力压裂微地震监测的震源机制反演方法应用研究[J]. 石油物探,2014,53(5):556-561.

    ZHU Haibo,YANG Xinchao,WANG Yu,et al. The application of microseismic source mechanism inversion in hydraulic fracturing monitoring[J]. Geophysical Prospecting for Petroleum,2014,53(5):556-561.
    [8]
    王玉海,王庆红,闫桂芳,等. 煤层气井压裂效果评价方法田[J]. 油气井测试,2010,19(5):44-47.

    WANG Yuhai,WANG Qinghong,YAN Guifang,et al. Evaluation method of fracturing effect for coalbed gas wells[J]. Well Testing,2010,19(5):44-47.
    [9]
    陈海潮,唐有彩,钮凤林,等. 利用微地震参数评估水力压裂改造效果研究进展[J]. 石油科学通报,2016,1(2):198-208.

    CHEN Haichao,TANG Youcai,NIU Fenglin,et al. Recent advances in microseismic monitoring and implications for hydraulic fracturing mapping[J]. Petroleum Science Bulletin,2016,1(2):198-208.
    [10]
    刘博,徐刚,杨光,等. 煤层气水力压裂微地震监测技术在鄂尔多斯盆地东部M地区的应用[J]. 测井技术,2017,41(6):708-712.

    LIU Bo,XU Gang,YANG Guang,et al. Microseismic monitoring technology of coalbed methane hydraulic fracturing in M area of Eastern Ordos[J]. Logging Technology,2017,41(6):708-712.
    [11]
    李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(1):83-96.

    LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines present status and future prospects[J]. Journal of China Coal Society,2017,42(1):83-96.
    [12]
    WARPINSKI N R,MAYERHOFER M J,VINCENT M C,et al. Stimulating unconventional reservoirs:Maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology,2009,48(10):39-51.
    [13]
    李红梅. 微地震监测技术在非常规油气藏压裂效果综合评估中的应用[J]. 油气地质与采收率,2015,22(3):129-134.

    LI Hongmei. Application of micro-seismic monitoring technology to unconventional hydrocarbon reservoir fracturing evaluation[J]. Petroleum Geology and Recovery Efficiency,2015,22(3):129-134.
    [14]
    赵博雄,王忠仁,刘瑞,等. 国内外微地震监测技术综述[J]. 地球物理学进展,2014,29(4):1882-1888.

    ZHAO Boxiong,WANG Zhongren,LIU Rui,et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics,2014,29(4):1882-1888.
    [15]
    王云宏,董蕊静. 煤层气井水力压裂微地震正演模拟研究[J]. 煤炭科学技术,2016,44(增刊1):137-141.

    WANG Yunhong,DONG Ruijing. Study on micro-seismic forward modeling in coalbed methane well hydraulic fracturing[J]. Coal Science and Technology,2016,44(S1):137-141.
  • Related Articles

    [1]YIN Shangxian, ZHANG Xiangwei, XU Hui, LIU Ming, XU Bin. Optimization of permeability coefficient and aquifer thickness in large-well-method[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(5): 53-56. DOI: 10.3969/j.issn.1001-1986.2015.05.013
    [2]WANG Hao, QIAO Wei, CHAI Rui. Overburden rock permeability variation and vertical zoning characteristics under the influence of coal mining[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 51-55. DOI: 10.3969/j.issn.1001-1986.2015.03.010
    [3]LI Shu-gang, ZHANG Tian-jun, CHEN Zhan-qing, LI Yu-shou. Experiment research on the permeability of gas-rich coal[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(4): 8-11.
    [4]ZHAO Lian-tao, YU Xu-lei, LIU Qi-meng, HU Ge. Research on rock complete stress-strain permeability experiment in coal floor[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(6): 37-40.
    [5]YUAN Zheng-rong. Research on mechanism of tectonic stress field controlling coal permeability[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 23-25.
    [6]CHENG Guo-ming, HUANG Kan, WANG Si-jing. Top-coal fractures and its implication on the study of permeability in MLTCM[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(6): 19-21.
    [7]ZHANG Hui. One of parameters reflecting coal reservoir permeability——block coal rate[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 21-22.
    [8]LI Shu-gang, QIAN Ming-gao, SHI Ping-wu. Permeability-strain equation relation to complete stress-strain path of coal sample[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 22-24.
    [9]Li Xiaoyan, Li Jing, Yang Lijun, Lei Chongli. THE PREDICTION OF COAL RESERVOIR PERMEABILITY IN TIEFA COALFIELD[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(1): 34-36.
    [10]Li Zhenshuan. CALCULATION OF THE COEFFICIENT OF PERMEABILITY WITH THE USE OF HYDROCHEMICAL METHOD[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(2): 37-41.
  • Cited by

    Periodical cited type(3)

    1. 齐跃明,周沛,周来,蒋丹,杨雨晴,刘延卓. 考虑采动效应的闭坑矿井水硫酸盐污染规律. 煤田地质与勘探. 2024(04): 89-100 . 本站查看
    2. 张耀文,张莉丽,宋颖霞,李海君. 采动作用下煤矿地下水流场的演变规律. 科学技术与工程. 2021(12): 4830-4837 .
    3. 刘彦青. 动态回采工作面煤壁瓦斯涌出数值计算及现场应用. 煤炭科学技术. 2021(06): 195-204 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (209) PDF downloads (32) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return