YAN Jiangping, PANG Changqing, DUAN Jianhua, DUAN Jianqiang, BAI Xiaoyan. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 92-97. DOI: 10.3969/j.issn.1001-1986.2019.S1.018
Citation: YAN Jiangping, PANG Changqing, DUAN Jianhua, DUAN Jianqiang, BAI Xiaoyan. Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 92-97. DOI: 10.3969/j.issn.1001-1986.2019.S1.018

Microseismic monitoring of underground hydraulic fracturing range in coal seam and analysis of influencing factors

Funds: 

National Key R&D Program of China(2017YFC0804103-3)

More Information
  • Received Date: July 14, 2019
  • Published Date: September 19, 2019
  • Hydraulic fracturing is an important technology for increasing permeability and productivity in the process of CBM development. The influence range of fracturing is directly related to the design and optimization of hydraulic fracturing scheme. As one of the key technologies, monitoring the sweep range of underground hydraulic fracturing in coal seam is a difficult technical problem to be solved urgently. In order to obtain the influence range of underground hydraulic fracturing in coal seam, according to the physical characteristics of coal seam and surrounding rock during fracturing, microseismic monitoring of fracturing influence range of three boreholes in a coal mine was carried out by using underground microseismic monitoring technology. The traditional borehole observation method was used to verify the monitoring results. The results show that the underground microseismic monitoring technology can obtain the fracturing damage range, but the fracturing damage range delineated by microseismic monitoring is smaller than that by borehole observation method. It is due to the soft coal seam and the large attenuation of seismic wave. The fractured surrounding rock or coal seam is seriously fractured, which is not conducive to the generation and expansion of fractures. So there fewer microseismic events are received.
  • [1]
    张子敏,王佑贵. 瓦斯地质规律与瓦斯预测[M]. 北京:煤炭工业出版社,2005:67-90.
    [2]
    俞启香. 矿井瓦斯防治[M]. 徐州:中国矿业大学出版社,1992:126-138.
    [3]
    李安启,姜海,陈彩虹. 我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J]. 天然气工业,2004,24(5):91-94.

    LI Anqi,JIANG Hai,CHEN Caihong. Hydraulic fracturing practice and coalbed fracture model selecting for coalbed gas wells in China[J]. Natural Gas Industry,2004,24(5):91-94.
    [4]
    徐刚,彭苏萍,邓绪彪. 煤层气井水力压裂压力曲线分析模型及应用[J]. 中国矿业大学学报,2011,40(2):173-178.

    XU Gang,PENG Suping,DENG Xubiao. Hydraulic fracturing pressure curve analysis and its application to coalbed methane wells[J]. Journal of China University of Mining and Technology,2011,40(2):173-178.
    [5]
    任建刚,宋志敏,刘高峰,等. 煤层气井压裂对井下瓦斯抽采量与涌出浓度影响研究[J]. 煤炭工程,2013,45(11):96-98.

    REN Jiangang,SONG Zhimin,LIU Gaofeng,et al. Study on fracturing of coal bed methane well affected to has drainage value and gas emission concentration in underground mine[J]. Coal Engineering,2013,45(11):96-98.
    [6]
    康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953-1959.

    KANG Hongpu,FENG Yanjun. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society,2012,37(12):1953-1959.
    [7]
    朱海波,杨心超,王瑜,等. 水力压裂微地震监测的震源机制反演方法应用研究[J]. 石油物探,2014,53(5):556-561.

    ZHU Haibo,YANG Xinchao,WANG Yu,et al. The application of microseismic source mechanism inversion in hydraulic fracturing monitoring[J]. Geophysical Prospecting for Petroleum,2014,53(5):556-561.
    [8]
    王玉海,王庆红,闫桂芳,等. 煤层气井压裂效果评价方法田[J]. 油气井测试,2010,19(5):44-47.

    WANG Yuhai,WANG Qinghong,YAN Guifang,et al. Evaluation method of fracturing effect for coalbed gas wells[J]. Well Testing,2010,19(5):44-47.
    [9]
    陈海潮,唐有彩,钮凤林,等. 利用微地震参数评估水力压裂改造效果研究进展[J]. 石油科学通报,2016,1(2):198-208.

    CHEN Haichao,TANG Youcai,NIU Fenglin,et al. Recent advances in microseismic monitoring and implications for hydraulic fracturing mapping[J]. Petroleum Science Bulletin,2016,1(2):198-208.
    [10]
    刘博,徐刚,杨光,等. 煤层气水力压裂微地震监测技术在鄂尔多斯盆地东部M地区的应用[J]. 测井技术,2017,41(6):708-712.

    LIU Bo,XU Gang,YANG Guang,et al. Microseismic monitoring technology of coalbed methane hydraulic fracturing in M area of Eastern Ordos[J]. Logging Technology,2017,41(6):708-712.
    [11]
    李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(1):83-96.

    LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines present status and future prospects[J]. Journal of China Coal Society,2017,42(1):83-96.
    [12]
    WARPINSKI N R,MAYERHOFER M J,VINCENT M C,et al. Stimulating unconventional reservoirs:Maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology,2009,48(10):39-51.
    [13]
    李红梅. 微地震监测技术在非常规油气藏压裂效果综合评估中的应用[J]. 油气地质与采收率,2015,22(3):129-134.

    LI Hongmei. Application of micro-seismic monitoring technology to unconventional hydrocarbon reservoir fracturing evaluation[J]. Petroleum Geology and Recovery Efficiency,2015,22(3):129-134.
    [14]
    赵博雄,王忠仁,刘瑞,等. 国内外微地震监测技术综述[J]. 地球物理学进展,2014,29(4):1882-1888.

    ZHAO Boxiong,WANG Zhongren,LIU Rui,et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics,2014,29(4):1882-1888.
    [15]
    王云宏,董蕊静. 煤层气井水力压裂微地震正演模拟研究[J]. 煤炭科学技术,2016,44(增刊1):137-141.

    WANG Yunhong,DONG Ruijing. Study on micro-seismic forward modeling in coalbed methane well hydraulic fracturing[J]. Coal Science and Technology,2016,44(S1):137-141.
  • Cited by

    Periodical cited type(20)

    1. 杨科,于祥,何祥,侯永强,张连富. 不同含水状态矸石胶结充填体能量演化与损伤特性研究. 岩土力学. 2025(01): 26-42 .
    2. 王波,周俊丽,翟龙虎,张超,王家乐,宋杰. 风积沙-萘系减水剂充填材料流动性测试研究. 兵器材料科学与工程. 2025(01): 94-100 .
    3. 董书宁,于树江,董兴玲,张步勤,郭小铭,王晓东,王凯,朱世彬,武博强,刘磊. 煤基固废与高盐废水“固液协同”充填处置关键技术. 煤田地质与勘探. 2025(01): 163-173 . 本站查看
    4. 于祥,杨科,何祥,侯永强,文志强,张连富. 饱和浸水过程矸石胶结充填体强度及损伤特征. 煤田地质与勘探. 2025(02): 147-159 . 本站查看
    5. 程强强,汪浩东,阴琪翔,赵明翔,姚越,闫宝峰. 玻璃纤维改性煤基固废胶结充填材料性能研究. 矿业安全与环保. 2024(01): 161-167+174 .
    6. 周天璧,蒋波,罗正东. 碱激发胶凝材料在充填领域的应用及发展. 山西建筑. 2024(07): 108-111 .
    7. 黄鹏程,蔡飞飞,吴天才,赵辉,郭伟勇,梁永平,祁风华. 宁东能源化工基地燃煤电厂粉煤灰的矿物学及元素地球化学特征. 洁净煤技术. 2024(03): 145-152 .
    8. 刘浪,罗屹骁,朱梦博,苏臣,吴涛涛,王建友,杭彦龙. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践. 煤炭科学技术. 2024(04): 83-92 .
    9. 张丽维,侯恩科,段中会,付德亮,贺丹. 基于AHP熵权TOPSIS模型的矸石充填方案评价和优选研究. 中国煤炭. 2024(05): 120-126 .
    10. 杨科,张继强,何祥,魏祯,赵新元. 多源煤基固废胶结充填体力学及变形破坏特征试验研究. 煤田地质与勘探. 2024(06): 102-114 . 本站查看
    11. 郭昆明. 智能化连续长距离注浆系统的研制及现场实践. 煤矿机电. 2024(03): 1-5 .
    12. 王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 .
    13. 李运红,王光炎,乔森,郭月明,刘娟,武亚磊. 全固废流态化材料充填性能研究. 人民长江. 2024(S2): 257-262 .
    14. 刘剑平,谢国帅,曹园章,陈炜旻,白晓红. 盐酸溶液环境下RM-CMK地聚合物的强度机理研究. 非金属矿. 2023(02): 9-12 .
    15. 侯典臣,郇恒恒. 工业废料氟石膏基充填材料试验研究. 煤矿现代化. 2023(04): 58-61 .
    16. 罗正东,蒋波,章本本,邓代强,李翔. 碱激发金矿粉充填材料力学性能及微观分析. 矿冶工程. 2023(04): 21-25 .
    17. 辛亚军,杨俊鹏,陈祖国,王晓鹏,任金武,吴春浩. 薄分层软顶间隔柔模承载解析与快速留巷技术. 采矿与安全工程学报. 2023(06): 1161-1176 .
    18. 周瑶,刘长友,谢志清,潘海洋. 粒径对煤矸石浆液的性能影响研究. 矿业研究与开发. 2023(12): 118-123 .
    19. 李硕森,徐青云,吴季洪. 膏体充填开采覆岩移动特征研究. 山西煤炭. 2023(04): 7-13 .
    20. 殷文文,张理群,丁丹,单士锋,陈永春,安士凯,郑刘根. 淮南潘一矿煤基固废精细化学结构及重金属生态风险评价. 煤田地质与勘探. 2023(12): 176-184 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (209) PDF downloads (32) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return