Citation: | HOU Enke, FAN Jichao, XIE Xiaoshen, LONG Tianwen, ZHANG Huanlan, WANG Jianhui, FAN Zhigang. Development characteristics of water-conducting fractured zone in deep coal seam based on microseismic monitoring[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 89-96. DOI: 10.3969/j.issn.1001-1986.2020.05.011 |
[1] |
李超. 煤炭开采中导水裂隙带发育高度预测的研究[J]. 内蒙古煤炭经济,2016,34(17):88-89.
LI Chao. Study on the prediction of the development height of the water conducting fracture zone in coal mining[J]. Inner Mongolia Coal Economy,2016,34(17):88-89.
|
[2] |
袁喜东. 榆神矿区导水裂隙带发育规律研究[D]. 西安:西安科技大学,2017. YUAN Xidong. Study on Yulin-shenmu coal mine areas lead water fracture zones development pattern[D]. Xi'an:Xi'an University of Science and Technology,2017.
|
[3] |
黄万朋,高延法,王波,等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J]. 采矿与安全工程学报,2017,34(2):330-335.
HUANG Wanpeng,GAO Yanfa,WANG Bo,et al. Evolution rule and development height of permeable fractured zone under combined-strata structure[J]. Journal of Mining & Safety Engineering,2017,34(2):330-335.
|
[4] |
程关文,王悦,马天辉,等. 煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用-以董家河煤矿微震监测为例[J]. 岩石力学与工程学报,2017,36(增刊2):4036-4046.
CHENG Guanwen,WANG Yue,MA Tianhui,et al. Research on the partitioning method of the overburden in coal mine based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(Sup.2):4036-4046.
|
[5] |
姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932-1938.
JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precision microseismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932-1938.
|
[6] |
李少飞. 微震监测技术研究现状及展望[J]. 煤炭科技,2017(3):197-199.
LI Shaofei. Present situation and prospect of microseismic monitoring technology[J]. Coal Science & Technology Magazine,2017(3):197-199.
|
[7] |
杜涛涛. 基于微震监测的综放工作面覆岩"两带"高度确定[J]. 煤矿开采,2016,21(5):79-82.
DU Taotao. Two-zones height determination of top coal caving working face based on micro seismic monitoring[J]. Coal Mining Technology,2016,21(5):79-82.
|
[8] |
金维浚,张衡,张文辉,等. 微地震监测技术及应用[J]. 地震,2013,33(4):84-96.
JIN Weijun,ZHANG Heng,ZHANG Wenhui,et al. Technology and application of micro-seismic monitoring[J]. Earthquake,2013,33(4):84-96.
|
[9] |
于克君,骆循,张兴民. 煤层顶板"两带"高度的微地震监测技术[J]. 煤田地质与勘探,2002,30(1):47-51.
YU Kejun,LUO Xun,ZHANG Xingmin. The technique of micro-seismic monitoring the height of "two zones"[J]. Coal Geology & Exploration,2002,30(1):47-51.
|
[10] |
汪华君,姜福兴,成云海,等. 覆岩导水裂隙带高度的微地震(MS)监测研究[J]. 煤炭工程,2006,38(3):74-76.
WANG Huajun,JIANG Fuxing,CHENG Yunhai,et al. Study on microseismic(MS) monitoring of the height of water flowing fracture zone in overlying rock[J]. Coal Engineering,2006,38(3):74-76.
|
[11] |
孔令海,姜福兴,杨淑华,等. 基于高精度微震监测的特厚煤层综放工作面顶板运动规律[J]. 北京科技大学学报,2010,32(5):552-558.
KONG Linghai,JIANG Fuxing,YANG Shuhua,et al. Movement of roof strata in extra-thick coal seams in top-coal caving mining based on a high precision micro-seismic monitoring system[J]. Journal of University of Science and Technology Beijing,2010,32(5):552-558.
|
[12] |
刘超,吴顺川,程爱平,等. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报,2014,36(9):1129-1135.
LIU Chao,WU Shunchuan,CHENG Aiping,et al. Microseismic monitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing,2014,36(9):1129-1135.
|
[13] |
丛森,程建远,王云宏,等. 导水裂隙带发育高度的微震监测研究[J]. 中国矿业,2017,26(3):126-131.
CONG Sen,CHENG Jianyuan,WANG Yunhong,et al. Study on microseismic monitoring of height of water flowing fracture zone[J]. China Mining Magazine,2017,26(3):126-131.
|
[14] |
孙运江,左建平,李玉宝,等. 邢东矿深部带压开采导水裂隙带微震监测及突水机制分析[J]. 岩土力学,2017,38(8):2335-2342.
SUN Yunjiang,ZUO Jianping,LI Yubao,et al. Micro-seismic monitoring on fractured zone and water inrush mechanism analysis of deep mining above aquifer in Xingdong coalmine[J]. Rock and Soil Mechanics,2017,38(8):2335-2342.
|
[15] |
原富珍,马克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846-1856.
YUAN Fuzhen,MA Ke,ZHUANG Duanyang,et al.Preparation mechanism of water inrush channels in bottom floor of Dongjiahe coal mine based on microseismic monitoring[J]. Journal of China Coal Society,2019,44(6):1846-1856.
|
[16] |
段建华,闫文超,南汉晨,等. 井-孔联合微震技术在工作面底板破坏深度监测中的应用[J]. 煤田地质与勘探,2020,48(1):208-213.
DUAN Jianhua,YAN Wenchao,NAN Hanchen,et al. Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J]. Coal Geology & Exploration 2020,48(1):208-213.
|
[17] |
杨尚欢,侯成录,何顺斌,等. 采动条件下围岩破裂区域的微震监测研究[J]. 现代矿业,2017,33(10):165-168.
YANG Shanghuan,HOU Chenglu,HE Shunbin,et al. Study on microseismic monitoring of surrounding rock fracture area under mining condition[J]. Modern Mining,2017,33(10):165-168.
|
[18] |
姜福兴,XUN Luo,杨淑华. 采场覆岩空间破裂与采动应力场的微震探测研究[J]. 岩土工程学报,2003,25(1):23-25
. JAING Fuxing,XUN Luo,YANG Shuhua. Study on microseismic monitoring for spatial structure of overlying strata and mining pressure field in long wall face[J]. Chinese Journal of Geotechnical Engineering,2003,25(1):23-25
|
[19] |
李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探,2019,47(2):129-136.
LI Chaofeng. Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield[J]. Coal Geology & Exploration,2019,47(2):129-136.
|
1. |
刘俊博,许巍,段威,胡宇博,李浩. 高温高压条件煤复电阻率频散特性实验研究. 当代化工. 2022(10): 2300-2306 .
![]() | |
2. |
唐纤,唐新功,向葵,童小龙. 基于Debye分解的岩石电性与孔渗参数关系探讨. 科学技术与工程. 2021(18): 7461-7466 .
![]() | |
3. |
孟慧,李健,雷东记,王亚娟. 煤体复电性频散响应实验研究. 煤田地质与勘探. 2020(04): 226-232 .
![]() |