ZHENG Sijian, YAO Yanbin, CAI Yidong, LIU Yong. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 56-60,65. DOI: 10.3969/j.issn.1001-1986.2018.01.010
Citation: ZHENG Sijian, YAO Yanbin, CAI Yidong, LIU Yong. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 56-60,65. DOI: 10.3969/j.issn.1001-1986.2018.01.010

Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin

Funds: 

National Natural Science Foundation of China (41472137)

More Information
  • Received Date: December 12, 2016
  • Published Date: February 24, 2018
  • To analyze the movable fluid, bound fluid and pore size distribution of low rank coal reservoir in southern margin of Junggar basin, the paper performed the high-speed centrifuge and low-field nuclear magnetic resonance experiment on six coal samples from six coalfields in southern margin of Junggar basin. The experimental results showed that low rank coal mainly developed adsorption pores, followed by seepage pore and fracture. The optimum centrifugal pressure for establishing irreducible water state is 1.380 MPa. The paper integrated the T2 spectra of both saturated water state and irreducible water state to calculate movable fluid porosity and residual water porosity. The movable fluid porosity ranges between 0.45%~1.89%(averaging at 1.29%), the residual water saturation ranges between 1.03%~7.45%(averaging at 4.18%). The movable fluid porosity shows exponential relationship with air permeability (R2=0.935 8). Based on the method of "centrifugal-T2C", the pore size of low rank coal in southern margin of Junggar basin was mainly distributed in 0.01~1 μm and the average of pore size is 1.771 μm.
  • [1]
    傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.
    [2]
    侯海海,邵龙义,唐跃,等. 我国低煤阶煤层气成因类型及成藏模式研究[J]. 中国矿业,2014,23(7):66-70

    . HOU Haihai,SHAO Longyi,TANG Yue,et al. Study on coal methane genetic types and formation models of low rank coal in China[J]. China Mining,2014,23(7):66-70
    [3]
    李臣臣,刘大锰,蔡益栋,等. 新疆准南地区煤储层显微裂隙特征及矿物控因分析[J]. 煤炭科学技术,2015,43(12):144-151.

    LI Chenchen,LIU Dameng,CAI Yidong,et al. Analysis on microfracture characteristics and control action of mineral genesis of coal reservoir in south margin of Junggar basin,Xinjiang[J]. Coal Science and Technology,2015,43(12):144-151.
    [4]
    姚艳斌,刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社,2013.
    [5]
    肖立志,陆大卫,柴细元,等. 核磁共振测井资料解释与应用导论[M]. 北京:石油工业出版社,2001.
    [6]
    SONG Y Q,RYU S,SEN P N. Determining multiple length scales in rocks[J]. Nature,2000,406(6):178-181.
    [7]
    MITCHELL J,GLADDEN L F,CHANDRASEKERA T C,et al. Low-field permanent magnets for industrial process and quality control[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,2014,76:1-60.
    [8]
    GEORGE C,肖立志. 核磁共振测井原理与应用[M]. 孟繁莹, 译. 北京:石油工业出版社,2007.
    [9]
    刘卫,邢立. 核磁共振录井[M]. 北京:石油工业出版社,2011.
    [10]
    KENYON W E. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics,1992,6(2):153-171.
    [11]
    龚国波,孙伯勤,刘买利,等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波普学杂志,2006,23(3):379-395.

    GONG Guobo,SUN Boqin,LIU Maili,et al. NMR Relaxation of the Fluid in rock porous media[J]. Chinese Journal of Magnetic Resonance,2006,23(3):379-395.
    [12]
    RAHUL D,RAI C S,SONDERGELD C. Integrating NMR with other petrophysical information to characterize a turbidite reservoir[J]. Texas Dental Journal,2004,128(6):291-295.
    [13]
    李海波. 岩心核磁共振可动流体T2截止值实验研究[D]. 北京:中国科学研究院,2008.
    [14]
    傅贵,张英华,邹得志. 煤与纯水平衡接触角的测量与分析[J]. 煤炭转化,1997,20(4):60-62.

    FU Gui,ZHANG Yinghua,ZOU Dezhi. The measurement and analysis of the balanced contact angle between coal and pure water[J]. Coal Conversion,1997,20(4):60-62.
    [15]
    YAO Y B,LIU D M,CHE Y,et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010,89(7):1371-1380.
    [16]
    YAKOV V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics,2001,42(4):334-343.
    [17]
    YAO Y B,LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel,2012,95:152-158.
    [18]
    何雨丹,毛志强,肖立志,等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报,2005,48(2):373-378.

    HE Yudan,MAO Zhiqiang,XIAO Lizhi,et al. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics,2005,48(2):373-378.
  • Related Articles

    [1]TIAN Han, LI Ning, WANG Shuangming, WU Hongliang, FENG Zhou, WANG Kewen, WANG Guiwen. A log-based method for evaluating the tar yield of tar-rich coal[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(7): 97-107. DOI: 10.12363/issn.1001-1986.23.12.0844
    [2]LYU Wenyu, LYU Chao, ZHANG Wenzhong, SUN Qiang, JIA Hailiang, TANG Li’an. Experimental study on CO2 storage in coal measure gas hydrates reservoirs in Muli Coalfield[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(6): 40-49. DOI: 10.12363/issn.1001-1986.22.10.0815
    [3]HOU Enke, FAN Jiangwei, GAO Lijun, WANG Jianwen, CHEN Dehai, CHI Baosuo, WANG Hongke. Application of surface nuclear magnetic resonance technology in detecting water abundance in concealed burnt zone[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 230-237. DOI: 10.3969/j.issn.1001-1986.2021.05.025
    [4]SHEN Yanjun, WANG Xu, ZHAO Chunhu, WANG Shengquan, GUO Chen, SHI Qingmin, MA Wen. Experimental study on multi-scale pore structure characteristics of tar-rich coal in Yushenfu mining area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 33-41. DOI: 10.3969/j.issn.1001-1986.2021.03.005
    [5]LIU Yinan, LIU Yong, XIN Fudong, WEI Hongyu. Applicability of mercury injection test to the characterization of low rank coal and its correction method[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 118-125. DOI: 10.3969/j.issn.1001-1986.2020.04.017
    [6]XU Lulu, DONG Shuning, DAI Zhenxue, XU Bin, YIN Shangxian, ZHOU Yan, CHEN Junjun. Fractal theory-based investigation of the optimal interval of minimum pore radius of sandstone[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 16-23. DOI: 10.3969/j.issn.1001-1986.2019.05.003
    [7]MA Huiteng, ZHAI Cheng, XU Jizhao, SUN Yong. Effect of NMR technology-based ultrasonic frequency on stimulated cracking of coal[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 38-44. DOI: 10.3969/j.issn.1001-1986.2019.04.007
    [8]LU Fangchao, ZHANG Yugui, JIANG Linhua. Anisotropic characteristics of nuclear magnetic resonance of pores and fractures in coal under uniaxial loading[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 66-72. DOI: 10.3969/j.issn.1001-1986.2018.01.012
    [9]MA Shu-zhi, JIA Hong-biao, TANG Hui-ming, HU Xin-li, LI Zhen-yu. Surveying hydrogeological conditions of landslide with nuclear magnetic resonance method[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(6): 33-36.
    [10]Zhao Haizhou. THE CHARACTERISTICS OF NUCLEAR MAGNETIC RESONANCE AND PARAMAGNETIC RESONANCE SPECTRA IN METAMORPHIC SERIES OF SAPROPELIC COAL[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 15-18.

Catalog

    Article Metrics

    Article views (237) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return