ZHENG Sijian, YAO Yanbin, CAI Yidong, LIU Yong. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 56-60,65. DOI: 10.3969/j.issn.1001-1986.2018.01.010
Citation: ZHENG Sijian, YAO Yanbin, CAI Yidong, LIU Yong. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 56-60,65. DOI: 10.3969/j.issn.1001-1986.2018.01.010

Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin

Funds: 

National Natural Science Foundation of China (41472137)

More Information
  • Received Date: December 12, 2016
  • Published Date: February 24, 2018
  • To analyze the movable fluid, bound fluid and pore size distribution of low rank coal reservoir in southern margin of Junggar basin, the paper performed the high-speed centrifuge and low-field nuclear magnetic resonance experiment on six coal samples from six coalfields in southern margin of Junggar basin. The experimental results showed that low rank coal mainly developed adsorption pores, followed by seepage pore and fracture. The optimum centrifugal pressure for establishing irreducible water state is 1.380 MPa. The paper integrated the T2 spectra of both saturated water state and irreducible water state to calculate movable fluid porosity and residual water porosity. The movable fluid porosity ranges between 0.45%~1.89%(averaging at 1.29%), the residual water saturation ranges between 1.03%~7.45%(averaging at 4.18%). The movable fluid porosity shows exponential relationship with air permeability (R2=0.935 8). Based on the method of "centrifugal-T2C", the pore size of low rank coal in southern margin of Junggar basin was mainly distributed in 0.01~1 μm and the average of pore size is 1.771 μm.
  • [1]
    傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.
    [2]
    侯海海,邵龙义,唐跃,等. 我国低煤阶煤层气成因类型及成藏模式研究[J]. 中国矿业,2014,23(7):66-70

    . HOU Haihai,SHAO Longyi,TANG Yue,et al. Study on coal methane genetic types and formation models of low rank coal in China[J]. China Mining,2014,23(7):66-70
    [3]
    李臣臣,刘大锰,蔡益栋,等. 新疆准南地区煤储层显微裂隙特征及矿物控因分析[J]. 煤炭科学技术,2015,43(12):144-151.

    LI Chenchen,LIU Dameng,CAI Yidong,et al. Analysis on microfracture characteristics and control action of mineral genesis of coal reservoir in south margin of Junggar basin,Xinjiang[J]. Coal Science and Technology,2015,43(12):144-151.
    [4]
    姚艳斌,刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社,2013.
    [5]
    肖立志,陆大卫,柴细元,等. 核磁共振测井资料解释与应用导论[M]. 北京:石油工业出版社,2001.
    [6]
    SONG Y Q,RYU S,SEN P N. Determining multiple length scales in rocks[J]. Nature,2000,406(6):178-181.
    [7]
    MITCHELL J,GLADDEN L F,CHANDRASEKERA T C,et al. Low-field permanent magnets for industrial process and quality control[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,2014,76:1-60.
    [8]
    GEORGE C,肖立志. 核磁共振测井原理与应用[M]. 孟繁莹, 译. 北京:石油工业出版社,2007.
    [9]
    刘卫,邢立. 核磁共振录井[M]. 北京:石油工业出版社,2011.
    [10]
    KENYON W E. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics,1992,6(2):153-171.
    [11]
    龚国波,孙伯勤,刘买利,等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波普学杂志,2006,23(3):379-395.

    GONG Guobo,SUN Boqin,LIU Maili,et al. NMR Relaxation of the Fluid in rock porous media[J]. Chinese Journal of Magnetic Resonance,2006,23(3):379-395.
    [12]
    RAHUL D,RAI C S,SONDERGELD C. Integrating NMR with other petrophysical information to characterize a turbidite reservoir[J]. Texas Dental Journal,2004,128(6):291-295.
    [13]
    李海波. 岩心核磁共振可动流体T2截止值实验研究[D]. 北京:中国科学研究院,2008.
    [14]
    傅贵,张英华,邹得志. 煤与纯水平衡接触角的测量与分析[J]. 煤炭转化,1997,20(4):60-62.

    FU Gui,ZHANG Yinghua,ZOU Dezhi. The measurement and analysis of the balanced contact angle between coal and pure water[J]. Coal Conversion,1997,20(4):60-62.
    [15]
    YAO Y B,LIU D M,CHE Y,et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010,89(7):1371-1380.
    [16]
    YAKOV V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics,2001,42(4):334-343.
    [17]
    YAO Y B,LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel,2012,95:152-158.
    [18]
    何雨丹,毛志强,肖立志,等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报,2005,48(2):373-378.

    HE Yudan,MAO Zhiqiang,XIAO Lizhi,et al. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics,2005,48(2):373-378.
  • Related Articles

    [1]LI Guihong, ZHAO Peipei, WU Xinbo. Construction concept of integrated geological engineering platform for coalbed methane[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 130-136. DOI: 10.12363/issn.1001-1986.21.11.0626
    [2]LI Shuguang, WANG Chengwang, WANG Hongna, WANG Yubin, XU Fengyin, GUO Zhidong, LIU Xinwei. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 59-67. DOI: 10.12363/issn.1001-1986.21.12.0842
    [3]WANG Hongyan, LIU Dexun, YU Yuanjiang, ZHAO Qun, QIU Zhen, DONG Dazhong, SHI Zhensheng, SUN Shasha, JIANG Zhenxue, LIU Honglin, ZHOU Shangwen, BAI Wenhua. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology progress and application[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 69-81. DOI: 10.12363/issn.1001-1986.21.12.0824
    [4]LI Xiaoming, LIU Jirong, LIN Wen, MA Lihong, LIU Dexun, CHEN Yujie. Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 1-11. DOI: 10.3969/j.issn.1001-1986.2021.06.001
    [5]DONG Yinping, LIU Yong, SHEN Youyi, ZHU Yalong, TIAN Zhongbin, HUANG Handong. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 90-96,101. DOI: 10.3969/j.issn.1001-1986.2018.05.014
    [6]WANG Jin, KANG Yongshang, JIANG Shanyu, ZHANG Bing, GU Jiaoyang. Difference of CBM development conditions in Shouyang and Shizhuang blocks, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 56-62. DOI: 10.3969/j.issn.1001-1986.2017.04.010
    [7]Song Xiaomei, Wang Houzhu. ENGINEERING GEOLOGICAL CHARACTERISTICS OF LOOSE BEDAND PREDICTION OF LAND SUBSIDENCE IN XINJI MINING AREA[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 43-47.
    [8]Ma Jinrong, Peng Xiangfeng, Ding Chenjian. ENGINEERING GEOLOGY METHOD OF STUDYING THE SUITABILITY OF THE LAND OVERLYING MINED-OUT AREA TO CONSTRUCTION[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(6): 44-46.
    [9]Xu Huide, Wu Shenglin. THE ENGINEERING GEOLOGICAL CHARACTERISTICS OF RED SOIL IN INNER一MONGOLIA AND ENGIN EERING IMPROVEMENT METHOD[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(1): 40-41.
    [10]Peng Xiangfeng. SOFT ROCK'S ENGINEERING GEOLOGICAL PROPERTIES IN CHINESE COAL MINES[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(5): 45-49.
  • Cited by

    Periodical cited type(4)

    1. 孙立春,刘佳,李娜,李新泽,文恒. 鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化. 石油实验地质. 2025(01): 43-53 .
    2. 刘尽贤,郭涛,周亚彤,李东阳,金晓波. 渝东南南川地区龙潭组煤储层可压性特征及改造效果分析. 石油实验地质. 2025(01): 77-88 .
    3. 吴嘉伟,汤韦,祝彦贺,王存武,田永净,訾敬玉,杨江浩,时贤. 鄂尔多斯盆地东北缘神府区块南部8+9号煤层地应力评价方法与应用. 石油实验地质. 2025(01): 27-42 .
    4. 熊冬,王翔,马新仿,张士诚,王雷,张遂安,郭天魁,刘美娟,贺甲元. 基于机械比能聚类分析的深层煤岩水平段岩性判识方法. 天然气工业. 2025(02): 114-124 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (236) PDF downloads (16) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return