Citation: | LIU Yinan, LIU Yong, XIN Fudong, WEI Hongyu. Applicability of mercury injection test to the characterization of low rank coal and its correction method[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 118-125. DOI: 10.3969/j.issn.1001-1986.2020.04.017 |
[1] |
孙钦平,王生维,田文广,等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气富集模式[J]. 天然气工业,2018,38(4):59-66.
SUN Qinping,WANG Shengwei,TIAN Wenguang,et al. Accumulation patterns of low-rank coalbed methane gas in the Jiergalangtu Sag of the Erlian basin[J]. Natural Gas Industry,2018,38(4):59-66.
|
[2] |
孙粉锦,田文广,陈振宏,等. 中国低煤阶煤层气多元成藏特征及勘探方向[J]. 天然气工业,2018,38(6):10-18.
SUN Fenjin,TIAN Wenguang,CHEN Zhenhong,et al. Low-rank coalbed methane gas pooling in China:Characteristics and exploration orientation[J]. Natural Gas Industry,2018,38(6):10-18.
|
[3] |
刘爱华,傅雪海,梁文庆,等. 不同煤阶煤孔隙分布特征及其对煤层气开发的影响[J]. 煤炭科学技术,2013,41(4):104-108.
LIU Aihua,FU Xuehai,LIANG Wenqing,et al. Pore distribution features of different rank coal and influences to coalbed methane development[J]. Coal Science and Technology,2013,41(4):104-108.
|
[4] |
李振,邵龙义,侯海海,等. 高煤阶煤孔隙结构及分形特征[J]. 现代地质,2017,31(3):595-605.
LI Zhen,SHAO Longyi,HOU Haihai,et al. Pore structures and fractal characteristics of high rank coals[J]. Geoscience,2017,31(3):595-605.
|
[5] |
吴双,汤达祯,许浩,等. 中-高煤阶煤岩孔隙发育特征[J]. 煤田地质与勘探,2016,44(6):69-74.
WU Shuang,TANG Dazhen,XU hao,et al. Characteristics of pore development in medium-high rank coal[J]. Coal Geology & Exploration,2016,44(6):69-74.
|
[6] |
郑司建,王小垚,周三栋. 准噶尔盆地南缘低煤阶煤储层孔隙分形特征[J]. 煤炭技术,2017,36(7):133-135.
ZHENG Sijian,WANG Xiaoyao,ZHOU Sandong,et al. Fractal dimension of low-rank coal reservoir pore in southern margin of Junggar basin[J]. Coal Technology,2017,36(7):133-135.
|
[7] |
董夔,贾建称,巩泽文,等. 淮北许疃矿构造煤孔隙结构及压敏效应[J]. 煤田地质与勘探,2019,47(2):58-65.
DONG Kui,JIA Jiancheng,GONG Zewen,et al. Study on pore structure and pressure-sensitive effect of tectonic coal in Huaibei Xutuan mine[J]. Coal Geology & Exploration,2019,47(2):58-65.
|
[8] |
FU Haijiao,TANG Dazhen,XU Ting,et al. Characteristics of pore structure and fractal dimension of low-rank coal:A case study of Lower Jurassic Xishanyao coal in the southern Junggar basin,NW China[J]. Fuel,2017,193:254-264.
|
[9] |
郑司建,姚艳斌,蔡益栋,等. 准噶尔盆地南缘低煤阶煤储层可动流体及孔径分布特征[J]. 煤田地质与勘探,2018,46(1):56-60.
ZHENG Sijian,YAO Yanbin,CAI Yidong,et al. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. Coal Geology & Exploration,2018,46(1):56-60.
|
[10] |
FU Haijiao,TANG Dazhen,XU Hao,et al. Abrupt changes in reservoir properties of low-rank coal and its control factors for methane adsorbability[J]. Energy & Fuels,2016,30(3):2084-2094.
|
[11] |
孟智强,郭和坤,周尚文,等. 核磁共振可动流体实验最佳离心力确定新方法研究[J]. 科学技术与工程,2013,13(25):7307-7311.
MENG Zhiqiang,GUO Hekun,ZHOU Shangwen,et al. Research of new method to calibrate the optimum centrifugal force for nuclear magnetic resonance movable fluid experiment[J]. Science Technology and Engineering,2013,13(25):7307-7311.
|
[12] |
朱林奇,张冲,石文睿,等. 结合压汞实验与核磁共振测井预测束缚水饱和度方法研究[J]. 科学技术与工程,2016,16(15):22-29.
ZHU Linqi,ZHANG Chong,SHI Wenrui,et al. Study on the method of prediction of irreducible water saturation by combining mercury intrusion and nmr logging data[J]. Science Technology and Engineering,2016,16(15):22-29.
|
[13] |
宁传祥,姜振学,苏思远,等. 泥页岩核磁共振T2谱换算孔隙半径方法[J]. 科学技术与工程,2016,16(27):14-19.
NING Chuanxiang,JIANG Zhenxue,SU Siyuan,et al. Method for calculating pore radius distribution in shale reservoirs from NMR T2 spectra[J]. Science Technology and Engineering,2016,16(27):14-19.
|
[14] |
XU Hao,TANG Dazhen,CHEN Yanpeng,et al. Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance[J]. Fuel,2018,213:158-163.
|
[15] |
何法,祝捷,张博,等. 对煤的压汞实验数据的压缩性修正[C]//北京力学会第二十三届学术年会会议论文集. 北京:北京力学会,2017:458-459.
HE Fa,ZHU Jie,ZHANG Bo,et al. Compressibility correction of experimental data of mercury injection in coal[C]//Proceedings of the 23rd Academic Year Conference of the Beijing Society of Theoretical and Applied Mechanics. Beijing:Beijing Society of Theoretical and Applied Mechanics,2017:458-459.
|
[1] | MENG Zhaoping, ZHANG Kun, SHEN Zhen. Difference analysis of methane diffusion properties between tectonic coal and primary coal[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 102-109. DOI: 10.12363/issn.1001-1986.21.12.0799 |
[2] | ZHOU Xihua, HAN Mingxu, BAI Gang, LAN Anchang, FU Zhihao. Experimental study on the influence of CO2 injection pressure on gas diffusion coefficient[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 81-86,99. DOI: 10.3969/j.issn.1001-1986.2021.01.008 |
[3] | YANG Zhaozhong, HAN Jinxuan, ZHANG Jian, HE Rui, LU Yanjun, LI Xiaogang. Molecular simulation of the influence of foam fracturing fluid additives on coalbed methane diffusion[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 94-103. DOI: 10.3969/j.issn.1001-1986.2019.05.013 |
[4] | MENG Zhaoping, ZHANG Guiyuan, LI Guoqing, LIU Jinrong. Analysis of diffusion properties of methane in low rank coal[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 84-89. DOI: 10.3969/j.issn.1001-1986.2019.02.014 |
[5] | LIN Chen, JIA Tianrang, ZHOU Shiwei, ZHANG Yugui. Diffusion characteristics of methane adsorption process in granular coal[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 44-49. DOI: 10.3969/j.issn.1001-1986.2018.04.007 |
[6] | LIN Yabing, MA Dongmin, LIU Yuhui, MA Wei, JIA Xuemei. Experiment of the influence of temperature on coalbed methane adsorption[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 24-28. DOI: 10.3969/j.issn.1001-1986.2012.06.006 |
[7] | HE Jun, HAO Guo-wen. Relationship between hydraulic conductivity and diffusion coefficient of clay liner[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(6): 40-43. |
[8] | LI Yu-hui, CUI Yong-jun, ZHONG Ling-wen, JIANG Wen-ping. Study on dynamic diffusion characteristics of methane in coal matrix[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(6): 31-34. |
[9] | NIE Baisheng, ZHANG Li, MA Wenfang. DIFFUSION MICRO-MECHANISM OF COAL BED METHANE IN COAL PROES[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(6): 20-22. |
[10] | WEI Zhong-tao, LIU Huan-jie, MENG Jian. NUMERICAL SIMULATION ON COALBED METHANE DIFFUSION IN GEOHISTORY[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 19-24. |
1. |
蓝龙飞. 在冻融条件下某露天矿山边坡变形特征研究. 矿产勘查. 2024(S1): 43-46 .
![]() | |
2. |
梁博,杨更社,冯伟,潘振兴,孙杰龙,刘慧,陈奇. 冻融诱发平面滑移型岩质边坡失稳模型试验研究. 西安科技大学学报. 2024(06): 1118-1126 .
![]() | |
3. |
张庆武,阴子晔,刘树弟. 岩土冻结的主要影响因素分析及应对措施. 煤炭与化工. 2023(10): 7-10+18 .
![]() | |
4. |
王云. 分析高陡岩土边坡绿色生态环境修复技术. 世界有色金属. 2022(09): 211-213 .
![]() | |
5. |
陈军浩,庄言,陈笔尖,赵振伟,王启云. 滨海软土冻结温度场发展规律. 煤田地质与勘探. 2020(04): 174-182 .
![]() | |
6. |
谭捍华,李斌,李家欣,袁维,李宗鸿. 冻融循环作用下白云岩边坡的稳定性分析. 科学技术与工程. 2020(33): 13825-13832 .
![]() | |
7. |
李国锋,李宁,刘乃飞,朱才辉. 多年冻岩土区露天矿边坡局部稳定性探究. 西安理工大学学报. 2019(01): 53-61 .
![]() | |
8. |
李伟. 分析高陡岩土边坡绿色生态环境修复技术. 居舍. 2018(32): 46 .
![]() |