Citation: | SHEN Yanjun, WANG Xu, ZHAO Chunhu, WANG Shengquan, GUO Chen, SHI Qingmin, MA Wen. Experimental study on multi-scale pore structure characteristics of tar-rich coal in Yushenfu mining area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 33-41. DOI: 10.3969/j.issn.1001-1986.2021.03.005 |
[1] |
王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001002.htm
WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 45(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001002.htm
|
[2] |
中国石油集团经济技术研究院. 2019年国内外油气行业发展报告[M]. 北京: 石油工业出版社, 2020.
China Petroleum Institute of Economics and Technology. 2019 domestic and international oil and gas industry development report[M]. Beijing: Petroleum Industry Press, 2020.
|
[3] |
孙晔伟, 唐跃刚, 李正越, 等. 中国特高挥发分特高油产率煤的分布及其特征[J]. 煤田地质与勘探, 2017, 45(5): 6-12. DOI: 10.3969/j.issn.1001-1986.2017.05.002
SUN Yewei, TANG Yuegang, LI Zhengyue, et al. Occurrence of super high volatile and tar yield coal in China[J]. Coal Geology & Exploration, 2017, 45(5): 6-12. DOI: 10.3969/j.issn.1001-1986.2017.05.002
|
[4] |
张旭, 王利斌, 裴贤丰, 等. 煤热解提高焦油产率及品质关键技术与研究进展[J]. 煤炭科学技术, 2019, 47(3): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903034.htm
ZHANG Xu, WANG Libin, PEI Xianfeng, et al. Research progress and key technology of improving coal tar yield and quality by coal pyrolysis[J]. Coal Science and Technology, 2019, 47(3): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903034.htm
|
[5] |
王双明, 申艳军, 孙强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2020, 2(4): 043531. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202004001.htm
WANG Shuangming, SHEN Yanjun, SUN Qiang, et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of western China[J]. Journal of Mining and Strata Control Engineering, 2020, 2(4): 043531. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202004001.htm
|
[6] |
程靖峰. 陕西富油煤资源量居全国之首榆林可"再造一个大庆油田"[N]. 陕西日报, 2019-11-30.
CHENG Jingfeng. Shaanxi's oil-rich coal resources rank first in the country Yulin can "rebuild a Daqing Oil Field"[N]. Shaanxi Daily, 2019-11-30.
|
[7] |
CLAYTON J L, RICE D D, MICHAEL G E. Oil-generating coals of the San Juan Basin, New Mexico and Colorado, USA[J]. Organic Geochemistry, 1991, 17(6): 735-742. DOI: 10.1016/0146-6380(91)90017-E
|
[8] |
杨海平, 陈汉平, 鞠付栋, 等. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报, 2008, 28(8): 40-45. DOI: 10.3321/j.issn:0258-8013.2008.08.008
YANG Haiping, CHEN Hanping, JU Fudong, et al. Influence of temperature on coal pyrolysis and char gasification[J]. Proceedings of the CSEE, 2008, 45(8): 40-45. DOI: 10.3321/j.issn:0258-8013.2008.08.008
|
[9] |
WEN Hu, LU Junhui, XIAO Yang, et al. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica Acta, 2015, 619: 41-47. DOI: 10.1016/j.tca.2015.09.018
|
[10] |
LI Xiangchen, KANG Yili, HAGHIGHI M. Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance(NMR) and mercury intrusion porosimetry(MIP)[J]. Measurement, 2018, 116: 122-128. DOI: 10.1016/j.measurement.2017.10.059
|
[11] |
吴见, 汤达祯, 李松, 等. 鄂尔多斯盆地东缘煤储层孔隙结构特征差异及影响因素[J]. 煤田地质与勘探, 2017, 45(5): 58-65. DOI: 10.3969/j.issn.1001-1986.2017.05.011
WU Jian, TANG Dazhen, LI Song, et al. Characteristics and influence factors of pore structure of coal reservoirs in the eastern margin of Ordos Basin[J]. Coal Geology & Exploration, 2017, 45(5): 58-65. DOI: 10.3969/j.issn.1001-1986.2017.05.011
|
[12] |
孟宪明. 煤孔隙结构和煤对气体吸附特性研究[D]. 青岛: 山东科技大学, 2007.
MENG Xianming. Study on coal pore structure of coals and characteristics of gases adsorption of coals[D]. Qingdao: Shandong University of Science and Technology, 2007.
|
[13] |
刘一楠, 刘勇, 辛福东, 等. 压汞实验对低阶煤表征的适用性分析及校正方法[J]. 煤田地质与勘探, 2020, 48(4): 118-125. DOI: 10.3969/j.issn.1001-1986.2020.04.017
LIU Yinan, LIU Yong, XIN Fudong, et al. Applicability of mercury injection test to the characterization of low rank coal and its correction method[J]. Coal Geology & Exploration, 2020, 48(4): 118-125. DOI: 10.3969/j.issn.1001-1986.2020.04.017
|
[14] |
杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202003002.htm
YANG Fu, HE Dan, MA Dongmin, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202003002.htm
|
[15] |
郑贵强. 不同煤阶煤的吸附、扩散及渗流特征实验和模拟研究[D]. 北京: 中国地质大学(北京), 2012.
ZHENG Guiqiang. Experimental and simulation study on the sorption, diffusion and seepage characters in different-ranked coals[D]. Beijing: China University of Geosciences(Beijing), 2012.
|
[16] |
袁梅, 王珍, 何明华, 等. 水分对含瓦斯煤渗透特性影响的试验研究[J]. 煤炭技术, 2012, 31(8): 79-81. DOI: 10.3969/j.issn.1008-8725.2012.08.039
YUAN Mei, WANG Zhen, HE Minghua, et al. Experiment study of moisture influence on permeability of coal containing methane[J]. Coal Technology, 2012, 31(8): 79-81. DOI: 10.3969/j.issn.1008-8725.2012.08.039
|
[17] |
王飞, 邢好运, 李万春, 等. 中低阶煤的孔隙结构演化特征[J]. 西安科技大学学报, 2020, 40(3): 384-392. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202003003.htm
WANG Fei, XING Haoyun, LI Wanchun, et al. Evolution characteristics of pore structure in medium and low rank coal[J]. Journal of Xi'an University of Science and Technology, 2020, 40(3): 384-392. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202003003.htm
|
[18] |
PAN Jienan, ZHAO Yanqing, HOU Quanlin, et al. Nanoscale pores in coal related to coal rank and deformation structures[J]. Transport in Porous Media, 2015, 107: 543-554. DOI: 10.1007/s11242-015-0453-5
|
[19] |
宋播艺, 宋党育, 李春辉, 等. 基于压汞法探究岩浆侵入对煤孔隙的影响[J]. 煤田地质与勘探, 2017, 45(3): 7-12. DOI: 10.3969/j.issn.1001-1986.2017.03.002
SONG Boyi, SONG Dangyu, LI Chunhui, et al. Influence of magmatic intrusion on the coal pore on the basis of mercury intrusion porosimetry[J]. Coal Geology & Exploration, 2017, 45(3): 7-12. DOI: 10.3969/j.issn.1001-1986.2017.03.002
|
[20] |
GANE P A C, RIDGWAY C J, LEHTINEN E, et al. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7920-7927. DOI: 10.1021/ie049448p
|
[21] |
YAO Yanbin, LIU Dameng. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152-158. DOI: 10.1016/j.fuel.2011.12.039
|
[22] |
LI Zhentao, LIU Dameng, CAI Yidong, et al. Pore structure and compressibility of coal matrix with elevated temperatures by mercury intrusion porosimetry[J]. Energy Exploration & Exploitation, 2015, 33(6): 809-826. http://www.researchgate.net/publication/290523008_Pore_structure_and_compressibility_of_coal_matrix_with_elevated_temperatures_by_mercury_intrusion_porosimetry
|
[23] |
李胜, 罗明坤, 范超军, 等. 基于核磁共振和低温氮吸附的煤层酸化增透效果定量表征[J]. 煤炭学报, 2017, 42(7): 1748-1756. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201707014.htm
LI Sheng, LUO Mingkun, FAN Chaojun, et al. Quantitative characterization of the effect of acidification in coals by NMR and low-temperature nitrogen adsorption[J]. Journal of China Coal Society, 2017, 42(7): 1748-1756. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201707014.htm
|
[24] |
YAO Yanbin, LIU Dameng, CHE Yao, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J]. Fuel, 2010, 89(7): 1371-1380. DOI: 10.1016/j.fuel.2009.11.005
|
[25] |
ZHENG Sijian, YAO Yaobin, LIU Dameng, et al. Characterizations of full-scale pore size distribution, porosity and permeability of coals: A novel methodology by nuclear magnetic resonance and fractal analysis theory[J]. International Journal of Coal Geology, 2018, 196: 148-158. DOI: 10.1016/j.coal.2018.07.008
|
[26] |
赵决顺. 致密岩心高压气测渗透率方法[D]. 北京: 中国石油大学(北京), 2018.
ZHAO Jueshun. Experimental study on the gas measuring permeability of tight reservoir[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[27] |
李焕同, 陈飞, 邹晓艳, 等. 基于低温液氮吸附法的陕南中低煤级煤孔隙结构特征[J]. 中国科技论文, 2019, 14(7): 808-814. DOI: 10.3969/j.issn.2095-2783.2019.07.018
LI Huantong, CHEN Fei, ZOU Xiaoyan, et al. Pore structure characteristics of medium and low rank coal in southern Shaanxi based on low-temperature nitrogen adsorption method[J]. China Sciencepaper, 2019, 14(7): 808-814. DOI: 10.3969/j.issn.2095-2783.2019.07.018
|
[28] |
CHENG Guoxi, JIANG Bo, LI Ming, et al. Effects of pore-fracture structure of ductile tectonically deformed coals on their permeability: An experimental study based on raw coal cores[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107371. DOI: 10.1016/j.petrol.2020.107371
|
[29] |
潘结南, 张召召, 李猛, 等. 煤的多尺度孔隙结构特征及其对渗透率的影响[J]. 天然气工业, 2019, 39(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901010.htm
PAN Jienan, ZHANG Zhaozhao, LI Meng, et al. Characteristics of multi-scale pore structure of coal and its influence on permeability[J]. Natural Gas Industry, 2019, 39(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901010.htm
|
[30] |
ZHAO Huawei, NING Zhengfu, WANG Qing, et al. Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J]. Fuel, 2015, 154: 233-242. DOI: 10.1016/j.fuel.2015.03.085
|
[31] |
QIN Lei, LI Shugang, ZHAI Cheng, et al. Joint analysis of pores in low, intermediate, and high rank coals using mercury intrusion, nitrogen adsorption, and nuclear magnetic resonance[J]. Powder Technology, 2020, 362: 615-627. DOI: 10.1016/j.powtec.2019.12.019
|
[32] |
刘彦飞, 汤达祯, 许浩, 等. 基于核磁共振的煤岩孔裂隙应力变形特征[J]. 煤炭学报, 2015, 40(6): 1415-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506030.htm
LIU Yanfei, TANG Dazhen, XU Hao, et al. Characteristics of the stress deformation of pore-fracture in coal based on nuclear magnetic resonance[J]. Journal of China Coal Society, 2015, 40(6): 1415-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506030.htm
|
[33] |
WANG Shugang, ELSWORTH D, LIU Jishan. Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 34-45. DOI: 10.1016/j.ijrmms.2012.09.005
|
[34] |
SOMERTON W H, SÖYLEMEZOḠLU I M, DUDLEY R C. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(5/6): 129-145. http://www.sciencedirect.com/science/article/pii/0148906275912449
|
[35] |
SHEN Jian, QIN Yong, LI Yepeng, et al. Experimental investigation into the relative permeability of gas and water in low-rank coal[J]. Journal of Petroleum Science and Engineering, 2019, 175: 303-316. DOI: 10.1016/j.petrol.2018.12.041
|
[36] |
王聪, 江成发, 储伟. 煤的分形维数及其影响因素分析[J]. 中国矿业大学学报, 2013, 42(6): 1009-1014. DOI: 10.3969/j.issn.1000-1964.2013.06.019
WANG Cong, JIANG Chengfa, CHU Wei. Fractal dimension of coals and analysis of its influencing factors[J]. Journal of China University of Mining & Technology, 2013, 42(6): 1009-1014. DOI: 10.3969/j.issn.1000-1964.2013.06.019
|
[37] |
张玉贵, 焦银秋, 雷东记, 等. 煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报(自然科学版), 2016, 35(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201602001.htm
ZHANG Yugui, JIAO Yinqiu, LEI Dongji, et al. Study on adsorption characteristics and fractal properties of nano-scale pores at low temperature in coal[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(2): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201602001.htm
|
[38] |
YAN Jiwei, MENG Zhaoping, ZHANG Kun, et al. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107041. DOI: 10.1016/j.petrol.2020.107041
|
[39] |
林海飞, 卜婧婷, 严敏, 等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报, 2019, 39(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201901001.htm
LIN Haifei, BU Jingting, YAN Min, et al. Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method[J]. Journal of Xi'an University of Science and Technology, 2019, 39(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201901001.htm
|
[40] |
汪雷, 汤达祯, 许浩, 等. 基于液氮吸附实验探讨煤变质作用对煤微孔的影响[J]. 煤炭科学技术, 2014, 42(增刊1): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2014S1091.htm
WANG Lei, TANG Dazhen, XU Hao, et al. Influence of metamorphism on micropores in coal seams based on nitrogen adsorption experiment[J]. Coal Science and Technology, 2014, 42(Sup. 1): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2014S1091.htm
|
[41] |
周三栋, 刘大锰, 蔡益栋, 等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质, 2018, 39(2): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802017.htm
ZHOU Sandong, LIU Dameng, CAI Yidong, et al. Characterization and fractal nature of adsorption pores in low rank coal[J]. Oil & Gas Geology, 2018, 39(2): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802017.htm
|
[42] |
WANG Fei, CHENG Yuanping, LU Shouqing, et al. Influence of coalification on the pore characteristics of middle-high rank coal[J]. Energy & Fuels, 2014, 28(9): 5729-5736. DOI: 10.1021/ef5014055
|
[43] |
王毅, 赵阳升, 冯增朝. 长焰煤热解过程中孔隙结构演化特征研究[J]. 岩石力学与工程学报, 2010, 29(9): 1859-1866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009016.htm
WANG Yi, ZHAO Yangsheng, FENG Zengchao. Study of evolution characteristics of pore structure during flame coal pyrolysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1859-1866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009016.htm
|
[44] |
刘晓芳. 低阶煤热解半焦的反应性能研究[D]. 湘潭: 湖南科技大学, 2016.
LIU Xiaofang. Study on reactivity of semi-coke from low rank coal[D]. Xiangtan: Hunan University of Science and Technology, 2016.
|
1. |
李奇,吴勇,乔磊. 深部中阶煤孔结构的压汞—液氮联合表征及孔隙分形特征. 石油实验地质. 2025(01): 130-142 .
![]() | |
2. |
王双明,鲍园,郝永辉,王生全,师庆民,李丹,胡宜亮. 富油煤研究进展与趋势. 煤田地质与勘探. 2024(04): 1-11 .
![]() | |
3. |
畅志兵,王楚楚,旷文昊,唐颖,吴晓丹,刘淑琴. 黏结性对富油煤热解孔隙结构演变及渗流的影响研究. 煤田地质与勘探. 2024(07): 54-63 .
![]() | |
4. |
师庆民,耿旭虎,王双明,蔡玥,韩波,王生全,张哲豪,何羽飞. 基于煤体真密度和自然伽马响应规律的富油煤判识. 煤田地质与勘探. 2024(07): 85-96 .
![]() | |
5. |
朱士飞,刘威,张静,秦云虎,毛礼鑫. 富油煤煤质特征与原位热解技术开发利用现状. 煤质技术. 2024(06): 23-33 .
![]() | |
6. |
申艳军,马文,王旭,师庆民,张蕾,吕游,许汉华. 不同煤层富油煤的孔隙发育与强度特征关联性研究. 煤矿安全. 2023(03): 161-168 .
![]() | |
7. |
鲍园,李争岩,安超,王双明,李丹. 多手段表征富油煤微生物厌氧发酵孔隙结构变化特征及机制. 煤炭学报. 2023(02): 891-899 .
![]() | |
8. |
宋党育,赵雨薇,李云波,余震. 低–中阶煤压汞实验可靠性分析与压缩性校正. 煤田地质与勘探. 2023(05): 33-44 .
![]() | |
9. |
王心义,陈博,田世元,邹宇,张波. 煤层底板复合岩层微观缝隙结构复杂程度定量辨识. 煤炭科学技术. 2023(07): 53-63 .
![]() | |
10. |
胡海光,孔新海. 微观孔隙结构特征分析方法现状与展望. 山东石油化工学院学报. 2023(02): 28-31 .
![]() | |
11. |
唐颖,吴晓丹,李乐忠,苏展,王若仪. 富油煤原位热解地下加热技术及其高效工艺. 洁净煤技术. 2023(12): 42-50 .
![]() | |
12. |
王双明,王虹,任世华,董书宁,郑德志,谭克龙,侯恩科,王生全,曲洋,焦小淼. 西部地区富油煤开发利用潜力分析和技术体系构想. 中国工程科学. 2022(03): 49-57 .
![]() | |
13. |
于伟,刘莉君,高博,王丽娜,岳双凌. 基于氮气吸附-核磁共振分析的煤气化细渣孔隙结构特征. 燃料化学学报. 2022(08): 966-973 .
![]() | |
14. |
田华,张晴,谢祖锋,王前吉,万娜. 富油煤热解产物在粉砂介质中的吸附行为研究. 环境科学学报. 2022(09): 133-140 .
![]() | |
15. |
高文博,冯烁,田继军,吴斌. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析. 煤炭工程. 2022(10): 136-140 .
![]() | |
16. |
黄笑乐,杨甫,韩磊,宁星,李瑞宇,董凌霄,曹虎生,邓磊,车得福. 富油煤(长焰煤)孔隙结构三维表征及渗流模拟. 化工学报. 2022(11): 5078-5087 .
![]() |