ZHAO Zhou, WEI Jiangbo. Simulation on the movement process of accumulated layer landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 111-116,122. DOI: 10.3969/j.issn.1001-1986.2017.06.018
Citation: ZHAO Zhou, WEI Jiangbo. Simulation on the movement process of accumulated layer landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 111-116,122. DOI: 10.3969/j.issn.1001-1986.2017.06.018

Simulation on the movement process of accumulated layer landslide based on PFC2D

Funds: 

National Natural Science Foundation of China(41302276)

More Information
  • Received Date: May 24, 2017
  • Published Date: December 24, 2017
  • The particle flow discrete element method to research ten groups of Mian County Yangjiawan accumulated layer landslide failure mode and the movement process was studied by numerical simulation. By comparing the simulation parameters of rock and soil mass calibrated by PFC2D biaxial simulation test and macroscopic parameters measured in laboratory experiments, the meso parameters of accumulated layer landslide were determined. Then, the calibrated meso parameters were applied to the accumulated layer landslide model, simulation study on the failure mode and movement process of landslide. The results show that the cumulative creep deformation of landslide in the initial stage, landslide body extrusion toe, the shear failure, and upward traction development made the whole landslide along the contact surface damage decline and accumulation in the slope toe, showing a typical traction type progressive failure, results are basically consistent with the actual situation. The results show that the applicability of the simulation of the particle flow method of accumulated layer landslide failure and the movement process is high, the landslide prevention and control have a certain reference value.
  • [1]
    贺可强,阳吉宝,王思敬. 堆积层边坡位移矢量角的形成作用机制及其与稳定性演化关系的研究[J]. 岩石力学与工程学报,2002,21(2):185-192.

    HE Keqiang,YANG Jibao,WANG Sijing. Study on the forming mechanism of displacement vector angle and stability evolution relation of accumulative-formation slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2002, 21(2):185-192.
    [2]
    贺可强,周敦云,王思敬. 降雨型堆积层滑坡的加卸载响应比特征及其预测作用与意义[J]. 岩石力学与工程学报,2004, 23(16):2665-2670.

    HE Keqiang, ZHOU Dunyun, WANG Sijing. Features of load-unload response ratio and its significance in predication of colluvial landslide induced by rainfall[J]. Chinese Journal of rock mechanics and engineering,2004,23(16):2665-2670.
    [3]
    贺可强,白建业,王思敬. 降雨诱发型堆积层滑坡的位移动力学特征分析[J]. 岩土力学,2005,26(5):705-709.

    HE Keqiang,BAI Jianye,WANG Sijing. Analysis of displacement dynamic features of colluvial landslide induced by rainfall[J]. Rock and Soil Mechanics,2005,26(5):705-709.
    [4]
    贺可强,郭璐,陈为公. 降雨诱发堆积层滑坡失稳的位移动力评价预测模型研究[J]. 岩石力学与工程学报,2015,34(增刊2):4204-4215.

    HE Keqiang,GUO Lu,CHEN Weigong. Research on displacement dynamic evaluation and forecast model of colluvial landslides induced by rainfall[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):4204-4215.
    [5]
    周中,傅鹤林,刘宝琛,等. 堆积层滑坡野外模拟试验方案设计[J]. 公路,2006,51(1):74-79.

    ZHOU Zhong,FU Helin,LIU Baochen,et al. Design of field simulation test of accumulation landslide[J]. Highway,2006, 51(1):74-79.
    [6]
    于永贵. 三峡库区万州、开县段堆积层滑坡发育规律及破坏模式[D]. 北京:中国地质大学,2008.
    [7]
    邢林啸. 三峡库区典型堆积层滑坡成因机制与预测预报研究[D]. 武汉:中国地质大学,2012.
    [8]
    汤罗圣. 三峡库区堆积层滑坡稳定性与预测预报研究[D]. 武汉:中国地质大学,2013.
    [9]
    王卫. 堆积层滑坡发生机理及防治措施[J]. 铁道建筑, 2015(6):121-124.

    WANG Wei. The mechanism and control measures of the colluvial landslide[J]. Railway Engineering,2015(6):121-124.
    [10]
    汪丁建,唐辉明,李长冬,等. 强降雨作用下堆积层滑坡稳定性分析[J]. 岩土力学,2016,37(2):439-445.

    WANG Dingjian,TANG Huiming,LI Changdong,et al. Stability analysis of colluvial landslide due to heavy rainfall[J]. Rock and Soil Mechanics,2016,37(2):439-445.
    [11]
    郑立宁,谢强,胡启军,等. 含膨胀性细粒碎屑堆积体开挖稳定性数值模拟[J]. 铁道学报,2012,34(11):83-87.

    ZHENG Lining,XIE Qiang,HU Qijun,et al. Numerical modeling of excavation stability of debris accumulation body with expansive fine grain[J]. Journal of the China Railway Society,2012,34(11):83-87.
    [12]
    刘辉. 堆积层滑坡机理及其稳定性研究[D]. 西安:西安工业大学,2012.
    [13]
    赵洲. 陕南山区县域滑坡灾害风险管理研究[D]. 西安:西安科技大学,2012.
    [14]
    CUNDALL P A,STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [15]
    CUNDALL P A,HART R D. Numerical modeling of discontinua[J]. Engineering Computations,1992,9(2):101-113.
    [16]
    郑立宁,谢强,柳堰龙,等. 基于颗粒流的膨胀土路基破坏特征分析[J]. 铁道工程学报,2011,28(3):32-36.

    ZHENG Lining,XIE Qiang,LIU Yanlong,et al. Analysis of failure properties of expansive soil subgrade with particle flow simulation[J]. Journal of Railway Engineering Society,2011, 28(3):32-36.
    [17]
    Itasca Consulting Group Inc. PFC2D(Particle Flow Code in 2Dimensions) User's Guide[M]. Minneapolis:Itasca Consulting Group,Inc,2002.
    [18]
    黄磊,李喜安,蔡玮彬,等. 延安新区马兰黄土湿陷特性的PFC2D模拟[J]. 煤田地质与勘探,2017,45(3):119-124.

    HUANG Lei,LI Xi'an,CAI Weibin,et al. Simulation of collapsible characteristics of Malan loess in Yan'an new area by PFC2D[J]. Coal Geology & Exploration,2017,45(3):119-124.
    [19]
    王云飞,王立平,焦华,等喆. 不同围压下砂岩的变形力学特性与损伤机制[J]. 煤田地质与勘探,2015,43(4):63-68.

    WANG Yunfei,WANG Liping,JIAO Huazhe,et al. Mechanical charactristics of deformation and damage mechanism of sandstone under different confining pressure[J]. Coal Geology & Exploration,2015,43(4):63-68.
    [20]
    董启朋,姚海林,詹永祥. 基于颗粒流模型的颗粒材料宏-细观力学研究[J]. 人民长江,2016,47(4):68-73.

    DONG Qipeng,YAO Hailin,ZHAN Yongxiang. Macro-mesoscopic mechanical behaviors of granular material based on particle flow model[J]. Yangtze River,2016,47(4):68-73.
    [21]
    周博,汪华斌,赵文锋,等. 黏性材料细观与宏观力学参数相关性研究[J]. 岩土力学,2012,33(10):3171-3175.

    ZHOU Bo,WANG Huabin,ZHAO Wenfeng,et al. Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. Rock and Soil Mechanics,2012,33(10):3171-3175.
    [22]
    曹可达,谭慧明,王娇娇,等. 吸力贯入式平板锚旋转特性的离散元数值模拟[J]. 中国科技论文,2015,10(7):829-833.

    CAO Keda,TAN Huiming,WANG Jiaojiao,et al. DEM numerical simulation on keying characteristics of suction embedded plate anchors[J]. Chinese Scientific Papers,2015,10(7):829-833.
  • Related Articles

    [1]YANG Yulong, CAO Weihua, GAN Chao, LI Yupeng, WU Min. Advances in research on stratigraphic characteristic parameter modeling and safety early warning for deep geological drilling processes[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(10): 195-206. DOI: 10.12363/issn.1001-1986.24.05.0341
    [2]SONG Kun, RUAN Di, LYU Honglin, HAN Luyang, HUANG Haifeng. Material point method-based simulation and dynamic characteristic analysis of instability-induced landslide movement: A case study of the Yanguan landslide in the Three Gorges Reservoir area[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(7): 140-150. DOI: 10.12363/issn.1001-1986.22.11.0897
    [3]LIU Shilei, ZHANG Ying, YUE Jianhua. Application of Simulink in transient process analysis of transient electromagnetic field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 209-215. DOI: 10.3969/j.issn.1001-1986.2020.02.031
    [4]LOU Yili, WU Zhonghu, WANG Anli, ZUO Yujun, LIU Hao, SUN Wenjibin. Numerical simulation of rupture process of shale under action of fluid-solid coupling[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 105-112. DOI: 10.3969/j.issn.1001-1986.2020.01.014
    [5]CHEN Da, XUE Xicheng, WEI Jiangbo. Simulation of failure process of Liujian landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 115-121. DOI: 10.3969/j.issn.1001-1986.2018.04.019
    [6]HUANG Lei, LI Xi'an, CAI Weibin, QIAO Lu. Simulation of collapsible characteristics of Malan loess in Yan'an new area by PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 119-124. DOI: 10.3969/j.issn.1001-1986.2017.03.022
    [7]LIU Wei-tao, JI Bao-jing, HE Shou-ying. Simulation of the distortion and destruction process of fractured fault zone[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(3): 33-37. DOI: 10.3969/j.issn.1001-1986.2009.03.008
    [8]LIU Hong-shuai, TANG Li-qiang, BO Jing-shan, FENG Zhi-ren. Elastic-viscoplastic analysis of explicit FEM for simulating wave motions in rock mass[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 38-42,47.
    [9]TANG Fang-tou, ZHANG Pei-zhen, DENG Zhi-hui, WANG Chun-yong, GAN Wei-jun. Present motion character of main fault zones in North China[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 4-6.
    [10]JIN De-wu, NIU Fu-jun, CHEN Zhi-xin, NI Wan-kui. Coupled mechanism for seepage,stress,temperature field of permafrost during freezing-thawing process[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(5): 40-42.
  • Cited by

    Periodical cited type(8)

    1. 李新旺,马素英,刘淼,付银环,徐宏斌,赵雪朋. 河北省深层地下水回补研究. 中国水利. 2024(07): 28-33 .
    2. 刘晓秀,曾一凡,武强,孟世豪,梁季月,侯柱平. 基于绿色生态开采的我国西部生态脆弱矿区“煤-水-热”共采范式(英文). Engineering. 2024(07): 209-222 .
    3. 曾一凡,刘晓秀,武强,梁季月. 双碳背景下“煤-水-热”正效协同共采理论与技术构想. 煤炭学报. 2023(02): 538-550 .
    4. 郭艳,桂和荣,魏久传,胡满聪,郭祥东,聂锋,陈永青,解建,叶爽,李俊. 区域注浆扰动下渗流场-化学场演化及耦合作用. 煤炭科学技术. 2023(07): 152-166 .
    5. 马莲净,王颂,杜松,赵宝峰,张阳,卢才武. 宁东煤田枯竭油层回注存储高矿化度矿井水技术思路. 煤炭科学技术. 2023(12): 149-158 .
    6. 张雷,徐智敏,袁慧卿,孙亚军,郭娟,陈天赐,李鑫,刘琪. 深部开采高盐矿井水减排治理技术体系构建与实现. 煤炭科学技术. 2023(12): 208-219 .
    7. 李超峰,王疆霞,刘峰,刘基,胡扬,徐中华. 彬长矿区含水层地下水水化学演化规律研究. 煤炭科技. 2022(04): 102-110 .
    8. 苏旭楠. 刘家沟组作为矿井水深部转移存储目的层可行性分析. 中国煤炭地质. 2022(S2): 47-53 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (101) PDF downloads (10) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return