LIU Shilei, ZHANG Ying, YUE Jianhua. Application of Simulink in transient process analysis of transient electromagnetic field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 209-215. DOI: 10.3969/j.issn.1001-1986.2020.02.031
Citation: LIU Shilei, ZHANG Ying, YUE Jianhua. Application of Simulink in transient process analysis of transient electromagnetic field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 209-215. DOI: 10.3969/j.issn.1001-1986.2020.02.031

Application of Simulink in transient process analysis of transient electromagnetic field

Funds: 

National Natural Science Foundation of China(41674133)

More Information
  • Received Date: November 14, 2019
  • Revised Date: February 25, 2020
  • Published Date: April 24, 2020
  • In order to analyze the distribution and variation law of transient electromagnetic field intuitively, the response equations of transient electromagnetic field under different damping states are theoretically derived, including a modeled transient process of transient electromagnetic field via Simulink. The equivalent circuit modules of excitation current, transmitting loop, geological anomaly body, receiving coil and their mutual inductance modules are developed. The influence of inductance, distributed capacitance and resistance on the equivalent circuit of transmitting and receiving loops are systematically studied. The results indicate a direct determination of the excitation waveform characteristics of the transient electromagnetic field based on the damping state of the transmitting loop, while the damping state of the receiving loop directly affects the attenuation characteristics and the observation quality of the transient electromagnetic field. The circuit simulation results are hugely significant in terms of restraining the non-geological influential factors and guide the design of transient electromagnetic observation system.
  • [1]
    王大设,汪志军,刘盛东,等. 基于烟圈效应的11点超前探观测系统设计[J]. 煤田地质与勘探,2011,39(3):67-70.

    WANG Dashe,WANG Zhijun,LIU Shengdong,et al. Eleven point observing system in advanced detecting based on smoking ring effect[J]. Coal Geology & Exploration,2011,39(3):67-70.
    [2]
    梁爽. 瞬变电磁法在煤矿水害防治中的应用[J]. 煤田地质与勘探,2012,40(3):70-73 LIANG Shuang. The application of TEM in detecting water hazards in coal mines[J]. Coal Geology & Exploration,2012,40(3):70-73.
    [3]
    李洋,王金平,魏启明. 瞬变电磁法在井下工作面顶板导水裂缝探测中的应用[J]. 煤田地质与勘探,2018,46(增刊1):66-71.

    LI Yang,WANG Jinping,WEI Qiming. Application of transient electromagnetic method for detecting water-conducting crack in the roof of underground working face[J]. Coal Geology& Exploration,2018,46(S1):66-71.
    [4]
    YANG Haiyan,CHEN Shen'en,YUE Jianhua,et al. Transient electromagnetic response with a ramp current excitation using conical source[J]. IEEE Access,2019,7:63829-63836.
    [5]
    YUE Jianhua,ZHANG Herui,YANG Haiyan,et al. Electrical prospecting methods for advance detection:progress,problems,and prospects in Chinese coal mines[J]. IEEE Geoscience and Remote Sensing Magazine,2019,7(3):94-106.
    [6]
    牛之琏. 时间域电磁法原理[M]. 长沙:中南大学出版社,2007. NIU Zhilian. Principle of time domain electromagnetic method[M]. Changsha:Central-south University Press,2007.
    [7]
    蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京:地质出版社,1998. JIANG Bangyuan. Applied near-zone magnetic source transient electromagnetic exploration[M]. Beijing:Geology Press,1998.
    [8]
    牛之琏. 近区瞬变电磁测深曲线畸变段的消除方法[J].煤田地质与勘探,1992,30(1):60-63.

    NIU Zhilian. Eliminate method for distorted stage of transient electromagnetic sounding curve in near-zone[J]. Coal Geology & Exploration,1992,30(1):60-63.
    [9]
    杨海燕,岳建华. 矿井瞬变电磁法理论与技术研究[M]. 北京:科学出版社,2015.

    YANG Haiyan,YUE Jianhua. Study on the theory and technology of mine transient electromagnetic methods[M]. Beijing:Science Press,2015.
    [10]
    TANG Hongzhi,YANG Haiyan,LU Guangyin,et al. Small multi-turn coils based on transient electromagnetic method for coal mine detection[J]. Journal of Applied Geophysics,2019,169:165-173.
    [11]
    杨海燕,岳建华,王梦倩,等. 矿井瞬变电磁法中多匝回线电感对目标体探测的影响[J]. 物探与化探,2007,31(1):34-37.

    YANG Haiyan,YUE Jianhua,WANG Mengqian,et al. Effect of multi-turn-coil inductance on object detection in mine transient electromagnetic method[J]. Geophysical and Geochemical Exploration,2007,31(1):34-37.
    [12]
    杨海燕,岳建华,胡文武,等. 多匝回线的自感对瞬变电磁早期信号的影响特征[J]. 物探化探计算技术,2007,29(2):96-98.

    YANGHaiyan,YUE Jianhua,HU Wenwu,et al. The characteristics of the early signal in tem affected by self-induction of multi-turn coil[J]. Computing Techniques for Geophysical and Geochemical Exploration,2007,29(2):96-98.
    [13]
    于景邨. 矿井瞬变电磁法勘探[M]. 徐州:中国矿业大学出版社,2007.

    YU Jingcun. Mine transient electromagnetic exploration[M]. Xuzhou:China University of Mining and Technology Press,2007.
    [14]
    嵇艳鞠. 浅层高分辨率全程瞬变电磁系统中全程二次场提取技术研究[D]. 长春:吉林大学,2004. JI Yanju. All-time secondary electromagnetic field extraction inhigh resolution transient electromagnetic system for subsurface imaging[D]. Changchun:Jilin University,2004.
    [15]
    嵇艳鞠,林君,王忠. 瞬变电磁接收装置对浅层探测的畸变分析与数值剔除[J]. 地球物理学进展,2007,22(1):262-267.

    JI Yanju,LIN Jun,WANG Zhong. Analysis and numerical removing of distortion intransient electromagnetic receiverdevice for shallow sounding[J]. Progress in Geophysics,2007,22(1):262-267.
    [16]
    付志红,周雒维. 瞬变电磁法高动态电流陡脉冲发射电路研究[J]. 中国电机工程学报,2008,28(33):44-48.

    FU Zhihong,ZHOU Luowei. Research on high dynamic current steep impulsetransmitting circuitsfor transient electromagnetic methodapplication[J]. Proceedings of the CSEE,2008,28(33):44-48.
    [17]
    马江峰. 瞬变电磁法小回线装置浅层探测技术研究[D]. 重庆:重庆大学,2012.

    MA Jiangfeng.Transient electromagneticmethodshallow prospecting technology with small loop device[D]. Chongqing:Chongqing University,2012.
    [18]
    KLEE H,ALLEN R. Simulation of dynamic systems with MATLAB andSimulink(Third Edition)[M]. London:CRC Press,2017.
    [19]
    EVERETT M E. Near-surface applied geophysics[M]. UK:Cambridge University Press,2013.
    [20]
    张莹. 多匝小回线瞬变电磁场衰减规律及其影响因素研究[D]. 徐州:中国矿业大学,2019. ZHANG Ying. Study on attenuation law and influencing factors of transient electromagnetic field in multi-turn small circuit[D]. Xuzhou:China University of Mining and Technology,2019.
  • Related Articles

    [1]LIU Changye, YANG Xianyu, CAI Jihua, WANG Ren, WANG Jianlong, DAI Fanfei, GUO Wanyang, JIANG Guosheng, FENG Yang. Intelligent identification method of drilling fluid rheological parameters based on machine learning[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 183-192. DOI: 10.12363/issn.1001-1986.24.01.0055
    [2]MA Li, XUE Haijun, WEN Xiaogang, FENG Xihui. Prediction of K2 limestone and its aquosity by joint inversion of logging and seismic data[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 142-146. DOI: 10.3969/j.issn.1001-1986.2016.04.027
    [3]TANG Ying, LI Lezhong, JIANG Shixin, ZHANG Binhai, ZHONG Mihong, SUN Yuhong. Parameter selection and applicability of gas content logging interpretation methodology in coal seam[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 94-98. DOI: 10.3969/j.issn.1001-1986.2015.04.020
    [4]SUN Yuan, ZHANG Liang, ZHU Jun, XUE Tao, DING Juan. Application of seismic attribute parameters in forecasting coal seam thickness[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 58-60.
    [5]WU Guan-mao, HUANG Ming, LI Gang. Gas content prediction based on BP neural network[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(1): 30-33.
    [6]CUI Ruo-fei, ZHONG Qi-tao, LI Jin-ping. Coal thickness interpretation prediction using seismic data[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(3): 54-57.
    [7]HAN Wan-lin, ZHANG You-di, LI Liang. Forecasting coal layer thickness by BP neural network from multiple seismic parameters[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 53-54.
    [8]SHEN Nai-qi, YANG Jian-wei, ZHENG Xi-ping. Prediction of mining collapse based on neural network[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 42-44.
    [9]Fang Zhijiang, Qu Zheng. APPLICATION OF BP NEURAL NETWORK IN ENVIRONMENTAL RECOGNITION MODEL[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(2): 13-15.
    [10]Chen Jiangfeng. THE RELATIONSHIP BETWEEN FRACTAL DIMENSION OF FISSURE NETWORK AND PERMEABILITY[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(3): 50-52.
  • Cited by

    Periodical cited type(13)

    1. 弓毅伟,陈杰华,唐欣薇. 砂土地层暗挖施工结合MJS工法应用研究. 施工技术(中英文). 2024(23): 36-41+46 .
    2. 姚志雄,夏华灿,黄敏,陈进,李健. 福州滨海软土MJS工法桩加固施工及环境效应. 地下空间与工程学报. 2023(03): 1019-1026+1037 .
    3. 姚志雄,夏华灿,吴波,郑国文. MJS工法桩在滨海地区软基加固工程中的应用. 人民长江. 2023(10): 141-149 .
    4. 刘欣,杨平,郑盛,王岩梓,陈潋,杨宁. MJS水泥土的试桩成桩效果. 林业工程学报. 2022(01): 169-176 .
    5. 陈潋. 水平MJS在地下通道中的施工应用. 科技与创新. 2022(09): 162-164 .
    6. 苗贺朝,褚振尧,黄选明,曹海东,姚恒,王海. 矿山砂卵石地层中截水帷幕长幅槽段稳定性研究. 煤田地质与勘探. 2022(07): 18-27 . 本站查看
    7. 宋欢. MJS高压旋喷桩在基坑围护结构断口处的应用. 天津建设科技. 2021(01): 12-15 .
    8. 熊仲明,覃泽宏,蔡虹,汪肆卜. 富水砂层盾构始发MJS工法桩的应用及分析. 铁道工程学报. 2021(03): 8-12+64 .
    9. 冯国卫. RJP与三重管高压旋喷工艺在基坑加固工程中施工工艺对比分析. 城市道桥与防洪. 2021(08): 212-214+238+25 .
    10. 王鹏,李林. 动水含砂层大直径超深高压旋喷桩施工技术. 城市道桥与防洪. 2021(10): 150-152+19 .
    11. 罗帅训,赵建勃,贺雪峰,韦波锋. 高压旋喷多管喷头的研制. 探矿工程(岩土钻掘工程). 2020(07): 78-81+87 .
    12. 朱明诚,韩强,赵贵斌,刘玉柱. 卵砾石含水层高压旋喷注浆止水帷幕技术. 煤田地质与勘探. 2020(04): 74-79 . 本站查看
    13. 王海,彭巍,曹海东,王丽. 露天煤矿截水帷幕效果检验方法及截水效果分析. 煤田地质与勘探. 2020(04): 87-93 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (145) PDF downloads (18) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return