WANG Yuan, CUI Ruofei, SUN Xuekai, CUI Dawei, QIN Ke. Utilizing seismic inversion information in classifying coal structures[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 69-73,76. DOI: 10.3969/j.issn.1001-1986.2011.04.018
Citation: WANG Yuan, CUI Ruofei, SUN Xuekai, CUI Dawei, QIN Ke. Utilizing seismic inversion information in classifying coal structures[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 69-73,76. DOI: 10.3969/j.issn.1001-1986.2011.04.018

Utilizing seismic inversion information in classifying coal structures

More Information
  • Received Date: January 13, 2011
  • Available Online: March 10, 2023
  • Based on the discrepancies in characters of different coal structures, the coal fractured zones are able to be determined by classifying different structural coal using the elastic parameters derived from the pre-seismic inversion. This paper introduced the theoretical basis and realization of the simultaneous inversion. Then, some primary analysis were conducted on the simultaneous inversion results, in which two lithological factors LR and MR have been obtained through LMR transform. By making use of the cross-plot of these two factors in analyzing the coal structures, the fractured zones have been delineated in mining district No.3 of Zhangji mine in South Anhui. This inversion analysis method can efficiently exploit the pre-stack information, which is often ignored in the past, significantly elevating the lithological explanation level.
  • Related Articles

    [1]ZHANG Huanlan, WANG Baoli. Waveform cross correlation-based imaging of underground seismic data while mining[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 29-33,40. DOI: 10.3969/j.issn.1001-1986.2020.04.004
    [2]YANG Zhen, GAO Zhenyu, LIU Xingye. Seismic impedance inversion of coal field with reflectivity method based on Bayesian theory[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 204-210,218. DOI: 10.3969/j.issn.1001-1986.2020.03.029
    [3]LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 10-14. DOI: 10.3969/j.issn.1001-1986.2019.03.002
    [4]LANG Yuquan, CHEN Tongjun, MA Li, MA Guodong. Water content prediction of roof sandstone using AVO technology[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 127-132. DOI: 10.3969/j.issn.1001-1986.2018.03.021
    [5]SHEN Youyi, TIAN Zhongbin, WANG Jianqing, YANG Xiaodong, CHENG Huihui. Application of seismic nonlinear stochastic inversion technique in prediction of CBM reservoir thickness[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 177-183. DOI: 10.3969/j.issn.1001-1986.2018.02.027
    [6]CHE Xiangqian, ZHANG Xinxin, BIAN Li. Seismic attribute reduction of CBM reservoir using improved combined cross entropy[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 131-135,143. DOI: 10.3969/j.issn.1001-1986.2017.03.024
    [7]REN Chuan, PAN Dongming, PENG Liuya, ZHAO Xin. Prediction of tectonic coal development using elastic impedance inversion[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 92-95,99. DOI: 10.3969/j.issn.1001-1986.2014.03.021
    [8]ZHOU Zhu-sheng, MA Cui-lian, HU Wen-wu, MENG Kui. Application of balanced cross-section technique in seismic data interpretation[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(3): 67-70.
    [9]LI Hong, LU Jin-ying, WANG Hong-you. Exploration logging-constrained inversion technique predicting coal-thickness[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(1): 74-77.
    [10]ZHANG Cong-ling, CUI Ruo-fei. The application of seismic attribute technique to predict Ordovician limestone karst fractured zones[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(2): 51-53.
  • Cited by

    Periodical cited type(11)

    1. 陶占盛,吉耘君,许超. 煤层气开发L型井水平井排采工程的研究. 中国煤层气. 2024(01): 12-16 .
    2. 拜阳. 武乡南区块深部煤层气储层特征及试采地质影响因素分析. 煤炭技术. 2024(09): 97-102 .
    3. 高玉巧,李鑫,何希鹏,陈贞龙,陈刚. 延川南深部煤层气高产主控地质因素研究. 煤田地质与勘探. 2021(02): 21-27 . 本站查看
    4. 郭涛. 贵州省织金区块岩脚向斜煤层气富集高产规律研究. 煤田地质与勘探. 2021(02): 62-69 . 本站查看
    5. 赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 .
    6. 闫霞,徐凤银,聂志宏,康永尚. 深部微构造特征及其对煤层气高产“甜点区”的控制——以鄂尔多斯盆地东缘大吉地区为例. 煤炭学报. 2021(08): 2426-2439 .
    7. 王晴,杨飞,龚伟成,徐天鑫,李一超. 煤层气储层动态渗透率影响因素及排采管控措施. 煤田地质与勘探. 2020(02): 114-119 . 本站查看
    8. 周亚彤. 延川南煤层气田动态特征和SEC动态储量评估方法研究. 油气藏评价与开发. 2020(04): 53-58 .
    9. 郑欢,许晓宏,王则,胡佳杰,雷琳,林燕. 延川南区块煤层气储层垂向非均质性特征及意义. 新疆地质. 2019(04): 555-559 .
    10. 原俊红,曹丽文,付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计. 煤田地质与勘探. 2018(05): 175-181 . 本站查看
    11. 刘培勇. 基于文献大数据的我国煤层气研究现状与热点分析. 中国煤炭地质. 2018(11): 34-40 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (30) PDF downloads (4) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return