LANG Yuquan, CHEN Tongjun, MA Li, MA Guodong. Water content prediction of roof sandstone using AVO technology[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 127-132. DOI: 10.3969/j.issn.1001-1986.2018.03.021
Citation: LANG Yuquan, CHEN Tongjun, MA Li, MA Guodong. Water content prediction of roof sandstone using AVO technology[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 127-132. DOI: 10.3969/j.issn.1001-1986.2018.03.021

Water content prediction of roof sandstone using AVO technology

Funds: 

National Natural Science Foundation of China(41774128,41374140)

More Information
  • Received Date: November 20, 2017
  • Published Date: June 24, 2018
  • The purpose of this research is to discuss the water content prediction of roof sandstone using Gassmann equation and AVO(Amplitude Variation with Offset) modelling. First of all, we calculate P-velocities, porosities and clay contents using actual well logs as inputs. Then, we fit the P-velocity of sandstone matrix with Han's empirical equation. After that, we calculate the S-velocity of sandstone matrix and build 14 sandstone models to calculate corresponding velocities and densities following Gassmann's workflow. Finally, we calculate the AVO responses of roof sandstones with Zoeppritz equation. The results show the cross plot between intercept(P) and gradient(G) can differentiate roof sandstone with different porosity and wettability. In summary, AVO technology is a useful tool to predict water content of roof sandstone.
  • [1]
    靳德武,刘英锋,刘再斌,等. 煤矿重大突水灾害防治技术研究新进展[J]. 煤炭科学技术,2013,41(1):25-29.

    JIN Dewu,LIU Yingfeng,LIU Zaibin,et al. New progress of study on major water inrush disaster prevention and control technology in coal mine[J]. Coal Science and Technology,2013,41(1):25-29.
    [2]
    虎维岳,田干. 我国煤矿水害类型及其防治对策[J]. 煤炭科学技术,2010,38(1):92-96.

    HU Weiyue,TIAN Gan. Mine water disater type and prevention and control counter measures in China[J]. Coal Science and Technology,2010,38(1):92-96.
    [3]
    代革联,周英,杨韬,等. 多因素复合分析法对直罗组砂岩富水性研究[J]. 煤炭科学技术,2016,44(7):186-190.

    DAI Gelian,ZHOU Ying,YANG Tao,et al. Study on multi-factor complex analysis method applied to watery of sandstone in Zhiluo Formation[J]. Coal Science and Technology,2016,44(7):186-190.
    [4]
    于景邨,刘志新,刘树才,等. 深部采场突水构造矿井瞬变电磁法探查理论及应用[J]. 煤炭学报,2007,32(8):818-821.

    YU Jingcun,LIU Zhixin,LIU Shucai,et al. Theoretical analysis of mine transient electromagnetic method and its application in detecting water burst structures in deep coal stope[J]. Journal of China Coal Society,2007,32(8):818-821.
    [5]
    邱占林,陈万煌,鲍道亮,等. 多种物探技术联合探测矿井水害[J]. 矿业安全与环保,2016,43(4):60-63,67.

    QIU Zhanlin,CHEN Wanhuang,BAO Daoliang,et al. Combined detection of mine water disasters with various geophysical prospecting techniques[J]. Mining Safety & Environmental Protection,2016,43(4):60-63,67.
    [6]
    毛明仓,韩德品,张维新. 利用矿井直流电法探测技术防治顶板水害[J]. 矿业安全与环保,2010,37(2):64-66.

    MAO Mingcang,HAN Depin,ZHANG Weixin. Preventing coalbed roof water disaster using underground direct current method[J]. Mining Safety & Environmental Protection,2010,37(2):64-66.
    [7]
    黄晓容. 矿井瞬变电磁法在水害超前探测中的应用[J]. 矿业安全与环保,2013,40(3):77-79,83.

    HUANG Xiaorong. Application of mine transient electroma-gnetic method in advance detection of water disaster[J]. Mining Safety & Environmental Protection,2013,40(3):77-79,83.
    [8]
    范涛,赵兆,吴海,等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报,2014,39(5):932-940.

    FAN Tao,ZHAO Zhao,WU Hai,et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society,2014,39(5):932-940.
    [9]
    CHANG Jianghao,YU Jingcun,LIU Zhixin. Three-dimensional numerical modelling of full-space transient electromagnetic responses of water in goaf[J]. Applied Geophysics,2016,13(3):539-552,581-582.
    [10]
    KWAK H T,AL-HARBI A M. Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability:9,599,581[P]. 2017-05-21.
    [11]
    CAMAITI M,BORTOLOTTI V,FANTAZZINI P. Stone porosity,wettability changes and other features detected by MRI and NMR relaxometry:A more than 15-year study[J]. Magnetic Resonance in Chemistry,2015,53(1):34-47.
    [12]
    HUM F,KANTZAS A. Using low-field NMR to determine wettability of,and monitor fluid uptake in,coated and uncoated sands[J]. Journal of Canadian Petroleum Technology,2006,45(7):23-28.
    [13]
    MOSS A,JING X,ARCHER J. Wettability of reservoir rock and fluid systems from complex resistivity measurements[J]. Journal of Petroleum Science and Engineering,2002,33(1):75-85.
    [14]
    张明川,杨文强,崔若飞. 基于地震反演方法的太原组灰岩含水性预测[J]. 地球物理学进展,2016,31(3):1289-1294.

    ZHANG Mingchuan,YANG Wenqiang,CUI Ruofei. Prediction of taiyuan group limestone's water-bearing property based on the seismic inversion method[J]. Progress in Geophysics,2016,31(3):1289-1294.
    [15]
    韦瑜,陈同俊,江晓雨,等. 基于褶积模型的地震反演方法在煤田地质勘探中的应用[J]. 地球物理学进展,2017,32(3):1258-1265.

    WEI Yu,CHEN Tongjun,JIANG Xiaoyu,et al. Application of seismic inversion based on convolution model in coalfield geological exploration[J]. Progress in Geophysics,2017,32(3):1258-1265.
    [16]
    彭刘亚,崔若飞,张亚兵. 概率神经网络在地震岩性反演中的应用[J]. 煤田地质与勘探,2012,40(4):63-65,70.

    PENG Liuya,CUI Ruofei,ZHANG Yabing. Application of probabilistic neural network in seismic lithological inversion[J]. Coal Geology & Exploration,2012,40(4):63-65,70.
    [17]
    马丽,薛海军,汶小岗,等. 测井与地震资料联合反演预测K2灰岩及其含水性[J]. 煤田地质与勘探,2016,44(4):142-146.

    MA Li,XUE Haijun,WEN Xiaogang,et al. Prediction of K2 limestone and its aquosity by joint inversion of logging and seismic data[J]. Coal Geology & Exploration,2016,44(4):142-146.
    [18]
    TELFORD W M,TELFORD W,GELDART L,et al. Applied geophysics[M]. Cambridge:Cambridge University Press,1990.
    [19]
    HAN D H,NUR A,MORGAN D. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics,1986,51(11):2093-2107.
    [20]
    MAVKO G,MUKERJI T,DVORKIN J. The rock physics handbook:Tools for seismic analysis of porous media[M]. Cambridge:Cambridge University Press,2009.
    [21]
    CASTAGNA J P,BATZLE M L,EASTWOOD R L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics,1985,50(4):571-581.
    [22]
    陈同俊. P波方位AVO理论及煤层裂隙探测技术[D]. 徐州:中国矿业大学,2009.
    [23]
    陈同俊,崔若飞,刘恩儒. VTI型构造煤AVO正演模拟[J]. 煤炭学报,2009,34(4):438-442.

    CHEN Tongjun,CUI Ruofei,LIU Enru. AVO forward modeling for VTI coal[J]. Journal of China Coal Society,2009,34(4):438-442.
  • Cited by

    Periodical cited type(8)

    1. 亚东菊,田锦瑞,殷全增,齐亮亮,张灯亮. 基于裂缝预测与流体预测技术的煤层顶板富水性研究——以葛泉矿2煤层为例. 物探化探计算技术. 2024(01): 80-90 .
    2. 程久龙,王慧杰,徐忠忠,黄琪嵩,姜国庆. 基于全卷积神经网络的钻孔瞬变电磁法岩层富水性预测研究. 煤田地质与勘探. 2023(01): 289-297 . 本站查看
    3. 李勤,王玮,王瀚林. HTI介质地震波各向异性AVO反演. 煤炭学报. 2021(06): 1925-1935 .
    4. 疏义国,李亚昊,王宏伟,孔皖军. 侏罗系含水层地下水动态特征及其涌水量预测. 煤炭与化工. 2020(06): 50-57 .
    5. 黄浩,方刚,梁向阳,刘洋,华照来,吕扬. 榆神矿区工作面顶板富水性综合分析. 煤矿安全. 2020(11): 232-236+242 .
    6. 张宪旭. 高密度和常规观测系统的河道成像效果分析. 煤田地质与勘探. 2020(06): 40-47+54 . 本站查看
    7. 李梁宁,魏久传,李立尧,石守桥,尹会永. 基于测井资料的含水层富水性预测模型:以鄂尔多斯地区营盘壕井田为例. 中国矿业. 2019(09): 143-147 .
    8. 刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术. 煤田地质与勘探. 2019(05): 9-15 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (131) PDF downloads (12) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return