LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 10-14. DOI: 10.3969/j.issn.1001-1986.2019.03.002
Citation: LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 10-14. DOI: 10.3969/j.issn.1001-1986.2019.03.002

Method of transparent working face based on dynamic detection of cross hole seismic subdivision

Funds: 

National Key R&D Program of China(2018YFC0807804)

More Information
  • Received Date: December 29, 2018
  • Published Date: June 24, 2019
  • Transparent working surface is an important part of intelligent coal mining. It provides detailed geological structure information of working face for intelligent coal mining. This paper proposes a working surface exploration method based on segmented and dynamic cross-hole seismic, which can realize progressive fine detection of coal working face. The method is a new development with seismic while mining, which is using the coal cutter as seismic source. The main idea is to image the working face segmented by deploying some detectors in a series of horizontal holes parallel to the long wall. The method performs fine imaging on the subdivided area. Compared with the existing seismic while mining, this method has obvious advantages. Firstly, the ray coverage is more uniform without blind zone. Secondly, the detection area is subdivided, so the detection accuracy is higher. The "virtual" source method, seismic interferometry, can be used to obtain shot gathers with high SNR, which can further improve the detection accuracy. The study believes that this method can adapt to the target requirements of transparent working face, and it is expected to become an important part of intelligent mining.
  • [1]
    王金华,黄曾华. 中国煤矿智能开采科技创新与发展[J]. 煤炭科学技术,2014,42(9):1-6.

    WANG Jinhua,HUANG Zenghua. Innovation and development of intelligent coal mining science and technology in China[J]. Coal Science and Technology,2014,42(9):1-6.
    [2]
    王国法. 煤矿综采自动化成套技术与装备创新和发展[J]. 煤炭科学技术,2013,41(11):1-5.

    WANG Guofa. Innovation and development on automatic completed set technology and equipment of fully-mechanized coal mining face[J]. Coal Science and Technology,2013,41(11):1-5.
    [3]
    王金华. 我国煤矿开采机械装备及自动化技术新进展[J]. 煤炭科学技术,2013,41(1):1-4.

    WANG Jinhua. New progress on China coal mining machinery equipment and automation technology[J]. Coal Science and Technology,2013,41(1):1-4.
    [4]
    DAVID C R,MARK T D,PETER B R,et al. A Practical inertial navigation solution for continuous miner automation[C]. 2012 Coal Operators' Conference,2012.
    [5]
    BUCHANAN D J,MASON I M,DAVIS R. The coal cutter as a seismic source in channel wave exploration[J]. IEEE Transactions on Geoscience and Remote Sensing,1980,GE-18(4):318-320.
    [6]
    WESTMAN E C,HARAMY K Y,ROCK A D. Seismic to-mography for longwall stress analysis[A]. in Proc. 2nd North Am. Rock Mech. Symp.,Montreal,QC,Canada,Jun 19-21,1996.
    [7]
    WESTMAN E C,HEASLEY K A,SWANSON P L,et al. A correlation between seismic tomography,seismic events and support pressure[A]. in Proc. 38th Rock Mech. Symp,Washington DC,Jul 7-10,2001.
    [8]
    KING A,LUO X. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source[J]. Geophysics,2009,74(2):1-8.
    [9]
    LUO X,KING A,WERKEN M V. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source:A feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3671-3678
    [10]
    LU B,CHENG J Y,HU J W,et al. Seismic features of vibration induced by mining machines and feasibility to be seismic sources[J]. Procedia Earth and Planetary Science,2011,3:76-85.
    [11]
    陆斌,程建远,胡继武,等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报,2013,38(12):2202-2207.

    LU Bin,CHENG Jianyuan,HUJiwu,et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society,2013,38(12):2202-2207.
    [12]
    陆斌. 以随采微震为震源的煤矿工作面透射探测[C]//煤炭安全高效开采地质保障技术及应用. 北京:煤炭工业出版社,2014.
    [13]
    覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探,2016,44(6):148-151.

    QIN Si. Underground-surface combined seismic while mining advance detection[J]. Coal Geology & Exploration,2016,44(6):148-151.
    [14]
    陆斌. 基于地震干涉的回采工作面随采地震成像方法[J]. 煤田地质与勘探,2016,44(6):142-147.

    LU Bin. A Seismic while mining mathod of coal working-face based on seismic interferometry[J]. Coal Geology & Exploration,2016,44(6):142-147.
    [15]
    陆斌,程建远,胡继武,等. 基于检波器细分阵列的煤矿开采地震探测系统及方法:201810610808.X.[P]. 2018-10-23.
    [16]
    SCHUSTER G T. Seismic Interferometry[M]. Cambridge University Press,Cambridge,2009.
    [17]
    WAPENAAR K,VAN DER NEUT J,RUIGROK E. Passive seismic interferometry by multidimensional deconvolution[J]. Geophysics,2008,73:51-56.
    [18]
    MINATO S,MATSUOKA T,TSUJI T,et al. Seismic interferometry using multidimensional deconvolution and cross correlation for crosswell seismic reflection data without borehole sources[J]. Geophysics,2011,76(1):SA19-SA34.
    [19]
    WAPENAAR K,RUIGROK E,VAN DER NEUT J,et al. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution[J]. Geophysical Research Letters,2011,38:L01313.
    [20]
    VAN DALEN K N,MIKESELL T D,RUIGROK E N,et al. Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution[J]. Journal of Geophysical Research-Solid Earth,2015,120:944-961.
  • Related Articles

    [1]XU Dongjing, ZHANG Ruiqing, GAO Weifu, JIANG Haonan, ZHU Haifeng, LI Ye, XIA Zhicun. Zonal prediction of the heights of water-conducting fracture zones under varying overburden types in North China-type coalfields[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 177-189. DOI: 10.12363/issn.1001-1986.24.10.0625
    [2]CHEN Luwang, HU Yongsheng, ZHANG Jie, ZHANG Miao, ZHENG Jian, ZHENG Xin, ZHANG Yuanyuan, CAI Xinyue, WU Minghui. Progress of research on key technologies for hydrogeochemical prospecting in North China type coalfield[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(2): 207-219. DOI: 10.12363/issn.1001-1986.23.01.0025
    [3]DING Tongfu, WANG Minhua, ZHAO Junfeng. Genesis analysis and study on tectonic control on water of Huainan North China-type coal field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 102-108. DOI: 10.3969/j.issn.1001-1986.2020.04.015
    [4]WANG Zitao, LIU Qimeng, LIU Yu. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 40-47. DOI: 10.3969/j.issn.1001-1986.2019.05.006
    [5]HU Baolin, GAO Deyi, LIU Huihu, XU Hongjie, ZHANG Ping, SUN Fei. Relationship between sedimentary facies and source rocks of Permian strata in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 1-6,13. DOI: 10.3969/j.issn.1001-1986.2017.06.001
    [6]WU Dun, ZHANG Wenyong, ZHU Wenwei, ZHOU Xuenian, DING Hai, ZHAO Zhiyi. The exploration and development of unconventional oil and gas in the Taiyuan Formation from Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 13-18. DOI: 10.3969/j.issn.1001-1986.2017.04.003
    [7]GAO Deyi, PING Wenwen, HU Baolin, LIU Huihu, XU Hongjie, CHENG Qiao, ZHANG Ping. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan coalfield and its significance[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 14-21. DOI: 10.3969/j.issn.1001-1986.2017.02.003
    [8]LI Yong-jun, PENG Su-ping. Classifications and characteristics of karst collapse columns in North China coalfields[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 53-57.
    [9]SONG Chuan-zhong, ZHU Guang, LIU Guo-sheng, NIU Man-lan. Identificating of structure and its dynamics control of Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 11-15.
    [10]ZHANG Hong, ZHENG Yu-zhu, ZHENG Gao-sheng, WANG Sheng-zu. Extensional structure under the Fufeng-nappe in Huainan Coalfield, Anhui Province, and its formative mechanism[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 1-4.
  • Cited by

    Periodical cited type(25)

    1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
    2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
    3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
    4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
    8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
    9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
    12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
    13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
    14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
    17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
    19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
    20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
    21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
    22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
    23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
    24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
    25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (152) PDF downloads (20) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return