Citation: | LU Bin. Method of transparent working face based on dynamic detection of cross hole seismic subdivision[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 10-14. DOI: 10.3969/j.issn.1001-1986.2019.03.002 |
[1] |
王金华,黄曾华. 中国煤矿智能开采科技创新与发展[J]. 煤炭科学技术,2014,42(9):1-6.
WANG Jinhua,HUANG Zenghua. Innovation and development of intelligent coal mining science and technology in China[J]. Coal Science and Technology,2014,42(9):1-6.
|
[2] |
王国法. 煤矿综采自动化成套技术与装备创新和发展[J]. 煤炭科学技术,2013,41(11):1-5.
WANG Guofa. Innovation and development on automatic completed set technology and equipment of fully-mechanized coal mining face[J]. Coal Science and Technology,2013,41(11):1-5.
|
[3] |
王金华. 我国煤矿开采机械装备及自动化技术新进展[J]. 煤炭科学技术,2013,41(1):1-4.
WANG Jinhua. New progress on China coal mining machinery equipment and automation technology[J]. Coal Science and Technology,2013,41(1):1-4.
|
[4] |
DAVID C R,MARK T D,PETER B R,et al. A Practical inertial navigation solution for continuous miner automation[C]. 2012 Coal Operators' Conference,2012.
|
[5] |
BUCHANAN D J,MASON I M,DAVIS R. The coal cutter as a seismic source in channel wave exploration[J]. IEEE Transactions on Geoscience and Remote Sensing,1980,GE-18(4):318-320.
|
[6] |
WESTMAN E C,HARAMY K Y,ROCK A D. Seismic to-mography for longwall stress analysis[A]. in Proc. 2nd North Am. Rock Mech. Symp.,Montreal,QC,Canada,Jun 19-21,1996.
|
[7] |
WESTMAN E C,HEASLEY K A,SWANSON P L,et al. A correlation between seismic tomography,seismic events and support pressure[A]. in Proc. 38th Rock Mech. Symp,Washington DC,Jul 7-10,2001.
|
[8] |
KING A,LUO X. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source[J]. Geophysics,2009,74(2):1-8.
|
[9] |
LUO X,KING A,WERKEN M V. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source:A feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3671-3678
|
[10] |
LU B,CHENG J Y,HU J W,et al. Seismic features of vibration induced by mining machines and feasibility to be seismic sources[J]. Procedia Earth and Planetary Science,2011,3:76-85.
|
[11] |
陆斌,程建远,胡继武,等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报,2013,38(12):2202-2207.
LU Bin,CHENG Jianyuan,HUJiwu,et al. Shearer source signal extraction and preliminary application[J]. Journal of China Coal Society,2013,38(12):2202-2207.
|
[12] |
陆斌. 以随采微震为震源的煤矿工作面透射探测[C]//煤炭安全高效开采地质保障技术及应用. 北京:煤炭工业出版社,2014.
|
[13] |
覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探,2016,44(6):148-151.
QIN Si. Underground-surface combined seismic while mining advance detection[J]. Coal Geology & Exploration,2016,44(6):148-151.
|
[14] |
陆斌. 基于地震干涉的回采工作面随采地震成像方法[J]. 煤田地质与勘探,2016,44(6):142-147.
LU Bin. A Seismic while mining mathod of coal working-face based on seismic interferometry[J]. Coal Geology & Exploration,2016,44(6):142-147.
|
[15] |
陆斌,程建远,胡继武,等. 基于检波器细分阵列的煤矿开采地震探测系统及方法:201810610808.X.[P]. 2018-10-23.
|
[16] |
SCHUSTER G T. Seismic Interferometry[M]. Cambridge University Press,Cambridge,2009.
|
[17] |
WAPENAAR K,VAN DER NEUT J,RUIGROK E. Passive seismic interferometry by multidimensional deconvolution[J]. Geophysics,2008,73:51-56.
|
[18] |
MINATO S,MATSUOKA T,TSUJI T,et al. Seismic interferometry using multidimensional deconvolution and cross correlation for crosswell seismic reflection data without borehole sources[J]. Geophysics,2011,76(1):SA19-SA34.
|
[19] |
WAPENAAR K,RUIGROK E,VAN DER NEUT J,et al. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution[J]. Geophysical Research Letters,2011,38:L01313.
|
[20] |
VAN DALEN K N,MIKESELL T D,RUIGROK E N,et al. Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution[J]. Journal of Geophysical Research-Solid Earth,2015,120:944-961.
|
1. |
郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
![]() | |
2. |
蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
![]() | |
3. |
张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
![]() | |
4. |
施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 .
![]() | |
5. |
陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 .
![]() | |
6. |
赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
![]() | |
7. |
张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
![]() | |
8. |
苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
![]() | |
9. |
张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
![]() | |
10. |
毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
![]() | |
11. |
满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
![]() | |
12. |
朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
![]() | |
13. |
施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
![]() | |
14. |
苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
![]() | |
15. |
李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
![]() | |
16. |
刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
![]() | |
17. |
姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
![]() | |
18. |
马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
![]() | |
19. |
张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
![]() | |
20. |
题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 .
![]() | |
21. |
刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
![]() | |
22. |
董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 .
![]() | |
23. |
张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
![]() | |
24. |
邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
![]() | |
25. |
琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .
![]() |