KANG Zhengming,WU Chensheng,YANG Guodong,et al. Application of a generative adversarial network algorithm to filling blank strips of fractures in formation microresistivity imaging images[J]. Coal Geology & Exploration,2025,53(3):197−207. DOI: 10.12363/issn.1001-1986.24.07.0472
Citation: KANG Zhengming,WU Chensheng,YANG Guodong,et al. Application of a generative adversarial network algorithm to filling blank strips of fractures in formation microresistivity imaging images[J]. Coal Geology & Exploration,2025,53(3):197−207. DOI: 10.12363/issn.1001-1986.24.07.0472

Application of a generative adversarial network algorithm to filling blank strips of fractures in formation microresistivity imaging images

More Information
  • Received Date: July 20, 2024
  • Revised Date: February 18, 2025
  • Objective 

    Gaps between the electrodes of formation microresistivity imaging (FMI) imagers lead to blank strips in the resistivity images of borehole walls, significantly influencing the parameter assessment for fractures near borehole walls. The absence of full-borehole images renders it challenging to assess the blank strip filling quality for fractures in FMI images. Using a dataset constructed utilizing both simulated and actual data, this study proposed a generative adversarial network (GAN)-based method for filling the blank strips of fractures in FMI images.

    Methods 

    First, the resistivity logging responses of a fractured formation were simulated using the 3D finite element method. Actual fractures were simplified using the transition boundary condition, improving the computational efficiency by avoiding multi-scale models and meeting the requirements of deep learning for substantial samples. Second, full-borehole images were attained by integrating the simulated fractures with actual FMI images, and masks generated from FMI images were used as blank strips. To achieve the optimal filling effects, hyperparameters were optimized by assessing the capacity of blank strip filling for fractures using image filling indicators. Finally, the blank strips of fractures were filled using masks with varying proportions, followed by a filling quality assessment.

    Results and Conclusions 

    The results indicate that the proposed method allows for the filling of blank strips with varying proportions. Notably, it yields encouraging filling effects and smooth morphology for coarse fractures and can restore their margins and details more accurately. Its applicability was further verified using actual log data, revealing that it produced natural-looking filled images that can effectively restore fracture features. The proposed method facilitates the extraction and quantitative analysis of fractures, laying a foundation for the precise assessment of fractured reservoirs and supporting the accurate prediction of hydrocarbon productivity.

  • [1]
    EKSTROM M P,DAHAN C A,CHEN Minyi,et al. Formation imaging with microelectrical scanning arrays[C]//The SPWLA 27th Annual Logging Symposium. Houston,Texas,June 9−13,1986:SPWLA-1986-BB.
    [2]
    侯振学,于雪娴,李东旭,等. 电成像测井处理新技术在储层评价方面的应用[J]. 地球物理学进展,2020,35(2):573−578.

    HOU Zhenxue,YU Xuexian,LI Dongxu,et al. Application of new processing technology of electrical imaging logging in reservoir evaluation[J]. Progress in Geophysics,2020,35(2):573−578.
    [3]
    邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173−187. DOI: 10.1038/aps.2011.203

    ZOU Caineng,ZHU Rukai,WU Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33(2):173−187. DOI: 10.1038/aps.2011.203
    [4]
    黄振华,程礼军,刘俊峰,等. 微电阻率成像测井在识别页岩岩相与裂缝中的应用[J]. 煤田地质与勘探,2015,43(6):121−123. DOI: 10.3969/j.issn.1001-1986.2015.06.025

    HUANG Zhenhua,CHENG Lijun,LIU Junfeng,et al. Application of micro–resistivity image logging in identifying shale facies and fractures[J]. Coal Geology & Exploration,2015,43(6):121−123. DOI: 10.3969/j.issn.1001-1986.2015.06.025
    [5]
    SIBBIT A M,FAIVRE O. The dual laterolog response in fractured rocks[C]//The SPWLA 26th Annual Logging Symposium. Dallas,Texas,June 17−20,1985:SPWLA-1985-T.
    [6]
    RITTER R N,CHEMALI R,LOFTS J,et al. High resolution visualization of near wellbore geology using while–drilling electrical images[C]//The SPWLA 45th Annual Logging Symposium. Noordwijk,Netherlands,June 6−9,2004:SPWLA-2004-PP.
    [7]
    蔡亚琳,柯式镇,康正明,等. 随钻电阻率成像测井在裂缝地层中的响应模拟[J]. 石油科学通报,2020,5(3):327−336. DOI: 10.3969/j.issn.2096-1693.2020.03.028

    CAI Yalin,KE Shizhen,KANG Zhengming,et al. Logging response simulation of a LWD resistivity imaging tool in fractured formations[J]. Petroleum Science Bulletin,2020,5(3):327−336. DOI: 10.3969/j.issn.2096-1693.2020.03.028
    [8]
    KANG Zhengming,LI Xin,NI Weining,et al. Using logging while drilling resistivity imaging data to quantitatively evaluate fracture aperture based on numerical simulation[J]. Journal of Geophysics and Engineering,2021,18(3):317−327. DOI: 10.1093/jge/gxab016
    [9]
    ZHANG Tuanfeng,SWITZER P,JOURNEL A. Filter–based classification of training image patterns for spatial simulation[J]. Mathematical Geology,2006,38:63−80. DOI: 10.1007/s11004-005-9004-x
    [10]
    HURLEY N F,ZHANG Tuanfeng. Method to generate full–bore images using borehole images and multipoint statistics[J]. SPE Reservoir Evaluation & Engineering,2011,14(2):204−214.
    [11]
    孙建孟,赵建鹏,赖富强,等. 电测井图像空白条带填充方法[J]. 测井技术,2011,35(6):532−537. DOI: 10.3969/j.issn.1004-1338.2011.06.008

    SUN Jianmeng,ZHAO Jianpeng,LAI Fuqiang,et al. Methods to fill in the gaps between pads of electrical logging images[J]. Well Logging Technology,2011,35(6):532−537. DOI: 10.3969/j.issn.1004-1338.2011.06.008
    [12]
    李振苓,沈金松,李思,等. 成像测井电导率图像空白带奇异谱插值和缝洞孔隙度分离方法[J]. 测井技术,2017,41(1):33−40.

    LI Zhenling,SHEN Jinsong,LI Si,et al. Singular spectral interpolation of blank strips in formation micro–scanner conductivity image and separation of porosity between fracture and karst cave[J]. Well Logging Technology,2017,41(1):33−40.
    [13]
    张翔,张猛,肖小玲,等. 复杂地层情况下全井周电成像图像修复方法[J]. 石油物探,2018,57(1):148−153. DOI: 10.3969/j.issn.1000-1441.2018.01.019

    ZHANG Xiang,ZHANG Meng,XIAO Xiaoling,et al. Image inpainting for fullbore electrical imaging logging in complex formations[J]. Geophysical Prospecting for Petroleum,2018,57(1):148−153. DOI: 10.3969/j.issn.1000-1441.2018.01.019
    [14]
    KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems,2012,25:1−9.
    [15]
    SCHROFF F,KALENICHENKO D,PHILBIN J. FaceNet:A unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston,MA,USA,June 07−12,2015. doi:10.1109/CVPR.2015.7298682.
    [16]
    DONG Chao,LOY C C,HE Kaiming,et al. Image super–resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295−307. DOI: 10.1109/TPAMI.2015.2439281
    [17]
    王哲峰,高娜,曾蕊,等. 基于深度学习模型的测井电成像空白条带充填方法[J]. 测井技术,2019,43(6):578−582.

    WANG Zhefeng,GAO Na,ZENG Rui,et al. A gaps filling method for electrical logging images based on a deep learning model[J]. Well Logging Technology,2019,43(6):578−582.
    [18]
    杜春雨,邢强,张晋言,等. 基于注意力约束深度生成网络的测井电成像空白条带填充[J]. 地球物理学进展,2022,37(4):1548−1558. DOI: 10.6038/pg2022FF0320

    DU Chunyu,XING Qiang,ZHANG Jinyan,et al. Blank strips filling for electrical logging images based on attention–constrained deep generative network[J]. Progress in Geophysics,2022,37(4):1548−1558. DOI: 10.6038/pg2022FF0320
    [19]
    张浩,司马立强,王亮,等. 基于卷积神经网络的电成像图像空白条带填充方法[J]. 地球物理学进展,2021,36(5):2136−2142.

    ZHANG Hao,SIMA Liqiang,WANG Liang,et al. Blank strip filling method for resistivity imaging image based on convolution neural network[J]. Progress in Geophysics,2021,36(5):2136−2142.
    [20]
    陈建华,杨丽丽,赵延静,等. 深度神经网络模型在测井电成像图像处理中的应用[J]. 电子测量技术,2021,44(4):138−143.

    CHEN Jianhua,YANG Lili,ZHAO Yanjing,et al. Application of deep neural network model in processing of electrical logging images[J]. Electronic Measurement Technology,2021,44(4):138−143.
    [21]
    袁晓涛,马旭成,肖仕军,等. 融合多层语义特征的测井电成像空白条带填充深度神经网络方法[J]. 西安石油大学学报(自然科学版),2022,37(6):133−139.

    YUAN Xiaotao,MA Xucheng,XIAO Shijun,et al. A deep neural network method for filling blank strips in electrical logging images based on fusion of multi–level semantic features[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2022,37(6):133−139.
    [22]
    WU Yuyan,DENG Rui,LINGHU Song,et al. Method of image restoration of the blank strips of electric imaging logs[J]. Arabian Journal of Geosciences,2022,15(13):1189. DOI: 10.1007/s12517-022-10434-6
    [23]
    苏乾潇,乔德新,任义丽,等. 基于傅里叶卷积的电成像测井图像修复[J/OL]. 北京航空航天大学学报,2024:1–11 [2025-02-17]. https://doi.org/10.13700/j.bh.1001-5965.2023.0754

    SU Qianxiao,QIAO Dexin,REN Yili,et al. Inpainting of blank strips in imaging logging images based on Fourier convolution[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,2024:1–11 [2025-02-17]. https://doi.org/10.13700/j.bh.1001-5965.2023.0754.
    [24]
    CRESWELL A,WHITE T,DUMOULIN V,et al. Generative adversarial networks:An overview[J]. IEEE Signal Processing Magazine,2018,35(1):53−65. DOI: 10.1109/MSP.2017.2765202
    [25]
    RADFORD A,METZ L,CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]//4th International Conference on Learning Representations. San Juan,2016.
    [26]
    YEH R A,CHEN Chen,LIM T Y,et al. Semantic image inpainting with deep generative models[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI,USA,July 21−26,2017. doi:10.1109/CVPR.2017.728.
    [27]
    ISOLA P,ZHU Junyan,ZHOU Tinghui,et al. Image–to–image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI,USA,July 21−26,2017. doi:10.1109/CVPR.2017.632.
    [28]
    GLOROT X,BORDES A,BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale,2010.
    [29]
    MISRA D. Mish:A self regularized non–monotonic activation function[C]//Mish Activation Function. Bhubaneswar,India 2019.
    [30]
    JOHNSON J,ALAHI A,LI Feifei. Perceptual losses for real–time style transfer and super–resolution[C]//Computer Vision–ECCV 2016:14th European Conference. Amsterdam,2016:694−711.
    [31]
    GATYS L,ECKER A,BETHGE M. A neural algorithm of artistic style[J]. Journal of Vision September,2016,16:326. DOI: 10.1167/16.12.326
    [32]
    GUPTA P,SRIVASTAVA P,BHARDWAJ S,et al. A modified PSNR metric based on HVS for quality assessment of color images[C]//2011 International Conference on Communication and Industrial Application. Kolkata,India,December 26−28,2011. doi:10.1109/ICCIndA.2011.6146669.
    [33]
    HORÉA,ZIOU D. Image quality metrics:PSNR vs. SSIM[C]//20th International Conference on Pattern Recognition. Istanbul,Turkey,August 23−26,2010. doi:10.1109/ICPR.2010.579.
  • Related Articles

    [1]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. A method for intelligent information extraction of coal fractures based on µCT and deep learning[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 55-66. DOI: 10.12363/issn.1001-1986.24.09.0609
    [2]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. Intelligent coal fracture extraction method using μCT and deep learning[J]. COAL GEOLOGY & EXPLORATION.
    [3]WANG Xinyu, WANG Cheng, MAO Yurong, YAN Liangjun, ZHOU Lei, GAO Wenlong. 3D forward modeling of DC resistivity method based on finite element with mixed grid[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(5): 136-143. DOI: 10.12363/issn.1001-1986.21.06.0338
    [4]LIANG Jian, GUO Baoke, SUN Jianhua, ZHANG Yongqin. Finite element method of resistance to pull-off for deep hole wire-line drill rod[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(2): 90-93. DOI: 10.3969/j.issn.1001-1986.2013.02.022
    [5]LU Yuan, YI Xiangyi, YANG Zhi, ZHANG Hao, GUAN Baoshang. Application of the finite element analysis in coal and rock stress-sensitivity[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(2): 22-25. DOI: 10.3969/j.issn.1001-1986.2011.02.005
    [6]WANG Jia-quan, WU Yi-feng, QIAN Jia-zhong, LI Fu-lin. Isoparametric finite-element 3D numerical model for fracture-karst flow in Jinan springs-zone[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(3): 39-41.
    [7]ZHOU Zhi-an, YANG Wei-min. The analysis of the lateral resistance on the fractured shaft wall[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(5): 37-39.
    [8]YANG Zhi-ming, YAO Ai-guo. Displacement analysis of compound soil nail support structure for excavation by one dimension finite element[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(5): 31-34.
    [9]ZHAN Jun, YU Qing-yang. Finite element method applying to stability analysis of landslide[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(1): 45-47.
    [10]Yan Shu, Chen Mingsheng. FINITE ELEMENT SOLUTION OF THREE-DIMENSIONAL GEOELECTRIC MODELS IN FREQUENCY ELECTROMAGNETIC SOUNDING EXCITED BY A HORIZONTAL ELECTRIC DIPOLE[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(3): 50-56.

Catalog

    Article Metrics

    Article views (79) PDF downloads (15) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return