Citation: | HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. Intelligent coal fracture extraction method using μCT and deep learning[J]. COAL GEOLOGY & EXPLORATION. |
[1] |
JIN Yi,ZHENG Junling,DONG Jiabin,et al. Fractal topography and complexity assembly in multifractals[J]. Fractals,2022,30(3):2250052.
|
[2] |
李国永,姚艳斌,王辉,等. 鄂尔多斯盆地神木-佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探,2024,52(2):70-80.
LI Guoyong,YAO Yanbin,WANG Hui,et al. Deep coalbed methane resources in the Shenmu-Jiaxian Block,Ordos Basin,China:Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration,2024,52(2):70-80.
|
[3] |
李斌,杨帆,张红杰,等. 神府区块深部煤层气高效开发技术研究[J]. 煤田地质与勘探,2024,52(8):57-68.
LI Bin,YANG Fan,ZHANG Hongjie,et al. Technology for efficient production of deep coalbed methane in the Shenfu Block[J]. Coal Geology & Exploration,2024,52(8):57-68.
|
[4] |
MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36-81.
|
[5] |
叶桢妮,侯恩科,段中会,等. 不同煤体结构煤的孔隙-裂隙分形特征及其对渗透性的影响[J]. 煤田地质与勘探,2019,47(5):70-78.
YE Zhenni,HOU Enke,DUAN Zhonghui,et al. Fractal characteristics of pores and microfractures of coals with different structure and their effect on permeability[J]. Coal Geology & Exploration,2019,47(5):70-78.
|
[6] |
施雷庭,赵启明,任镇宇,等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发,2023,13(4):424-432.
SHI Leiting,ZHAO Qiming,REN Zhenyu,et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development,2023,13(4):424-432.
|
[7] |
李学博,刘春春,张武昌,等. 高煤阶煤裂隙发育特征对煤层气开发的影响:以沁水盆地南部郑庄区块为例[J]. 中国煤层气,2022,19(3):12-15.
LI Xuebo,LIU Chunchun,ZHANG Wuchang,et al. Influence of development characteristics of high-rank coal fractures on coalbed methane development:Taking Zhengzhuang Block in South Qinshui Basin as an example[J]. China Coalbed Methane,2022,19(3):12-15.
|
[8] |
王昱,宋晓夏,胡咤咤,等. 西山煤田屯兰区块煤层气低产井的增产改造措施及效果分析[J/OL]. 河南理工大学学报(自然科学版),2024:1-13[2025-02-13]. http://kns.cnki.net/kcms/detail/41.1384.N.20240821.1707.002.html.
WANG Yu,SONG Xiaoxia,HU Zhazha,et al. Measures and effect analysis of stimulation and rehabilitation of low-production coalbed methane wells in Tunlan Block,Xishan Coalfield[J/OL]. Journal of Henan Polytechnic University(Natural Science),2024:1-13[2025-02-13]. http://kns.cnki.net/kcms/detail/41.1384.N.20240821.1707.002.html.
|
[9] |
王跃鹏,孙正财,刘向君,等. 煤层割理结构及其对井壁稳定的影响研究[J]. 油气藏评价与开发,2020,10(4):45-52.
WANG Yuepeng,SUN Zhengcai,LIU Xiangjun,et al. Study on cleat structure and its influence on wellbore stability in coal seams[J]. Reservoir Evaluation and Development,2020,10(4): 45-52.
|
[10] |
胡秋嘉,刘世奇,毛崇昊,等. 基于X-ray CT与FIB-SEM的无烟煤孔裂隙发育特征[J]. 煤矿安全,2021,52(9):10-15.
HU Qiujia,LIU Shiqi,MAO Chonghao,et al. Characteristics of pores and fractures in anthracite coal based on X-ray CT and FIB-SEM[J]. Safety in Coal Mines,2021,52(9):10-15.
|
[11] |
KETCHAM R A. Computational methods for quantitative analysis of three-dimensional features in geological specimens[J]. Geosphere,2005,1(1):32-41.
|
[12] |
IASSONOV P,GEBRENEGUS T,TULLER M. Segmentation of X-ray computed tomography images of porous materials:A crucial step for characterization and quantitative analysis of pore structures[J]. Water Resources Research,2009,45(9):W09415.
|
[13] |
DENG Hang,FITTS J P,PETERS C A. Quantifying fracture geometry with X-ray tomography:Technique of Iterative Local Thresholding (TILT) for 3D image segmentation[J]. Computational Geosciences,2016,20(1):231-244.
|
[14] |
GOLAB A,WARD C R,PERMANA A,et al. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography,with special reference to modes of mineral occurrence[J]. International Journal of Coal Geology,2013,113:97-108.
|
[15] |
WILDENSCHILD D,SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources,2013,51:217-246.
|
[16] |
RAMANDI H L,IRTZA S,SIROJAN T,et al. FracDetect:A novel algorithm for 3D fracture detection in digital fractured rocks[J]. Journal of Hydrology,2022,607:127482.
|
[17] |
HU Zhazha,LU Shuangfang,KLAVER J,et al. An integrated imaging study of the pore structure of the Cobourg limestone:A potential nuclear waste host rock in Canada[J]. Minerals,2021,11(10):1042.
|
[18] |
MATHEWS J P,CAMPBELL Q P,XU Hao,et al. A review of the application of X-ray computed tomography to the study of coal[J]. Fuel,2017,209:10-24.
|
[19] |
TAN Jianquan,ZHOU Wenrui,LIN Ling,et al. A review of semantic medical image segmentation based on different paradigms[J]. International Journal on Semantic Web and Information Systems (IJSWIS),2024,20(1):1-25.
|
[20] |
KNACKSTEDT M A,LATHAM S,MADADI M,et al. Digital rock physics:3D imaging of core material and correlations to acoustic and flow properties[J]. The Leading Edge,2009,28(1):28-33.
|
[21] |
CNUDDE V,BOONE M N. High-resolution X-ray computed tomography in geosciences:A review of the current technology and applications[J]. Earth-Science Reviews,2013,123:1-17.
|
[22] |
LEI Lian,YANG Qiliang,YANG Ling,et al. Deep learning implementation of image segmentation in agricultural applications:A comprehensive review[J]. Artificial Intelligence Review,2024,57(6):149.
|
[23] |
尹艺晓,马金刚,张文凯,等. 从U-Net到Transformer:混合模型在医学图像分割中的应用进展[J/OL]. 激光与光电子学进展,2024:1-38[2025-02-13]. http://kns.cnki.net/kcms/detail/31.1690.TN.20240612.0920.042.html.
YIN Yixiao,MA Jingang,ZHANG Wenkai,et al. From U-Net to Transformer:Progress in the application of hybrid models in medical image segmentation[J/OL]. Laser & Optoelectronics Progress,2024:1-38[2025-02-13]. http://kns.cnki.net/kcms/detail/31.1690.TN.20240612.0920.042.html.
|
[24] |
王登科,房禹,魏建平,等. 基于深度学习的煤岩Micro-CT裂隙智能提取与应用[J]. 煤炭学报,2024,49(8):3439-3452.
WANG Dengke,FANG Yu,WEI Jianping,et al. Intelligent extraction of Micro-CT fissures in coal based on deep learning and its application[J]. Journal of China Coal Society,2024,49(8):3439-3452.
|
[25] |
郝天轩,徐新革,赵立桢. 煤岩裂隙图像识别方法研究[J]. 工矿自动化,2023,49(10):68-74.
HAO Tianxuan,XU Xinge,ZHAO Lizhen. Research on image recognition methods for coal rock fractures[J]. Journal of Mine Automation,2023,49(10):68-74.
|
[26] |
郑江韬,齐子豪,刘佳存,等. 基于卷积神经网络的煤岩微裂隙提取方法[J]. 矿业科学学报,2022,7(6):680-688.
ZHENG Jiangtao,QI Zihao,LIU Jiacun,et al. Segmentation of micro-cracks in fractured coal based on convolutional neural network[J]. Journal of Mining Science and Technology,2022,7(6):680-688.
|
[27] |
YU Jinxia,WU Chengyi,LI Yingying,et al. Intelligent identification of coal crack in CT images based on deep learning[J]. Computational Intelligence and Neuroscience,2022,2022(1):7092436.
|
[28] |
LU Fengli,FU Chengcai,ZHANG Guoying,et al. Convolution neural network based on fusion parallel multiscale features for segmenting fractures in coal-rock images[J]. Journal of Electronic Imaging,2020,29(2):23008.
|
[29] |
KARIMPOULI S,TAHMASEBI P,SAENGER E H. Coal cleat/fracture segmentation using convolutional neural networks[J]. Natural Resources Research,2020,29(3):1675-1685.
|
[30] |
VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,2017:6000-6010.
|
[31] |
RAMANDI H L,ARMSTRONG R T,MOSTAGHIMI P. Micro-CT image calibration to improve fracture aperture measurement[J]. Case Studies in Nondestructive Testing and Evaluation,2016,6:4-13.
|
[32] |
SUN Haoran. A review of 3D-2D registration methods and applications based on medical images[J]. Highlights in Science,Engineering and Technology,2023,35:200-224.
|
[33] |
孙书魁,范菁,孙中强,等. 基于深度学习的图像数据增强研究综述[J]. 计算机科学,2024,51(1):150-167.
SUN Shukui,FAN Jing,SUN Zhongqiang,et al. Survey of image data augmentation techniques based on deep learning[J]. Computer Science,2024,51(1):150-167.
|
[34] |
章展熠,张宝荃,王周立,等. 多茶类CNN图像识别的数据增强优化及类激活映射量化评价[J]. 茶叶科学,2023,43(3):411-423.
ZHANG Zhanyi,ZHANG Baoquan,WANG Zhouli,et al. Data enhancement optimization and class activation mapping quantitative evaluation for CNN image recognition of multiple tea categories[J]. Journal of Tea Science,2023,43(3):411-423.
|
[35] |
王气洪,贾洪杰,黄龙霞,等. 联合数据增强的语义对比聚类[J]. 计算机研究与发展,2024,61(6):1511-1524.
WANG Qihong,JIA Hongjie,HUANG Longxia,et al. Semantic contrastive clustering with federated data augmentation[J]. Journal of Computer Research and Development,2024,61(6):1511-1524.
|
[36] |
SU Run,ZHANG Deyun,LIU Jinhuai,et al. MSU-Net:Multi-scale U-Net for 2D medical image segmentation[J]. Frontiers in Genetics,2021,12:639930.
|
[37] |
SHAN Liang,HU Bin,CHEN Long,et al. Detecting COVID-19 on CT images with impulsive-backpropagation neural networks[C]//202234th Chinese Control and Decision Conference (CCDC),2022:2797-2803.
|
[38] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Delving deep into rectifiers:Surpassing human-level performance on image net classification[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1026-1034.
|
[39] |
张成业,李飞跃,李军,等. 基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类[J]. 煤田地质与勘探,2022,50(6):94-103.
ZHANG Chengye,LI Feiyue,LI Jun,et al. Recognition of land use on open-pit coal mining area based on DeepLabv3+ and GF-2 high-resolution images[J]. Coal Geology & Exploration,2022,50(6):94-103.
|