Citation: | SU Xianbo,WANG Lufei,ZHAO Weizhong,et al. Physical simulation of in-situ microbial methanation in coal reservoirs with the participation of supercritical CO2[J]. Coal Geology & Exploration,2022,50(3):119−126. DOI: 10.12363/issn.1001-1986.21.11.0684 |
[1] |
谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211. XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
|
[2] |
《bp世界能源统计年鉴》2021年版[R/OL].(2021-07-08) [2021-11-15]. https://www.bp.com/zh_cn/china/home/news/reports/statistical-review-2021.html
|
[3] |
任建华. 渗透率动态变化对煤层气井产量的影响[J]. 天然气工业,2018,38(增刊1):62−64. REN Jianhua. The impact of dynamic permeability changes on the production of coal–bed methane wells[J]. Natural Gas Industry,2018,38(Sup.1):62−64.
|
[4] |
SCOTT A R. Improving coal gas recovery with microbially enhanced coalbed methane[J]. Coalbed Methane:Scientific,Environmental and Economic Evaluation,1999:89−110.
|
[5] |
苏现波,夏大平,赵伟仲,等. 煤层气生物工程研究进展[J]. 煤炭科学技术,2020,48(6):1−30. SU Xianbo,XIA Daping,ZHAO Weizhong,et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology,2020,48(6):1−30.
|
[6] |
张金龙,郭红光,韩青,等. 生物成因煤层气产生原理及其影响因素的研究进展[J]. 矿产综合利用,2018(6):1−6. ZHANG Jinlong,GUO Hongguang,HAN Qing,et al. Discussion about the mechanism and main influencing factors of the production of biogenic coalbed methane[J]. Multipurpose Utilization of Mineral Resources,2018(6):1−6. DOI: 10.3969/j.issn.1000-6532.2018.06.001
|
[7] |
何环, 黄新颖, 黄再兴, 等. 高岭土对陕西榆林煤生物模拟产气的影响[J/OL]. 煤田地质与勘探, 2022: 1–11[2022–02–16] . http://kns.cnki.net/kcms/detail/61.1155.p.20211115.1337.004.html.
HE Huan, HUANG Xinying, HUANG Zaixing, et al. Effect of kaolin on simulated biogenic coalbed methane production from Yulin coal, Shaanxi Province[J/OL]. Coal Geology & Exploration, 2022: 1–11[2022–02–16] . http://kns.cnki.net/kcms/detail/61.1155.p.20211115.1337.004.html.
|
[8] |
BARUA S,ZAKARIA B S,CHUNG T,et al. Microbial electrolysis followed by chemical precipitation for effective nutrients recovery from digested sludge centrate in WWTPs[J]. Chemical Engineering Journal,2019,361:256−265. DOI: 10.1016/j.cej.2018.12.067
|
[9] |
陈超,郭红光,张攀攀,等. 外加电场作用下煤制生物甲烷的条件优化试验研究[J]. 煤炭科学技术,2020,48(12):224−230. CHEN Chao,GUO Hongguang,ZHANG Panpan,et al. Experimental study on condition optimization of coal–to–biomethane enhanced by action of external electric field[J]. Coal Science and Technology,2020,48(12):224−230.
|
[10] |
RITTER D,VINSON D,BARNHART E,et al. Enhanced microbial coalbed methane generation:A review of research,commercial activity,and remaining challenges[J]. International Journal of Coal Geology,2015,146:28−41. DOI: 10.1016/j.coal.2015.04.013
|
[11] |
朱剑豪. 瘤胃菌群结合沼渣后处理技术提升秸秆木质纤维素的厌氧消化效能[D]. 无锡: 江南大学, 2021.
ZHU Jianhao. Enhanced anaerobic digestion of straw lignocellulose via ruminal microbiota and digestate post–treatment[D]. Wuxi: Jiangnan University, 2021.
|
[12] |
张怀文,姚义清,谢昌文. 不同联合预处理对褐煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探,2021,49(4):162−169. ZHANG Huaiwen,YAO Yiqing,XIE Changwen. Effects of different combined pretreatments on biogenic methane production by anaerobic digestion of lignite[J]. Coal Geology & Exploration,2021,49(4):162−169. DOI: 10.3969/j.issn.1001-1986.2021.04.019
|
[13] |
HAN Yitong,ZHENG Huanda,JING Xiandong,et al. Swelling behavior of polyester in supercritical carbon dioxide[J]. Journal of CO2 Utilization,2018,26:45−51. DOI: 10.1016/j.jcou.2018.04.017
|
[14] |
PERERA M S A,RANJITH P G,AIREY D W,et al. Sub–and super–critical carbon dioxide flow behavior in naturally fractured black coal:An experimental study[J]. Fuel,2011,90(11):3390−3397. DOI: 10.1016/j.fuel.2011.05.016
|
[15] |
ZHANG Kaizhong,CHENG Yuanping,LI Wei,et al. Influence of supercritical CO2 on pore structure and functional groups of coal:Implications for CO2 sequestration[J]. Journal of Natural Gas Science and Engineering,2017,40:288−298. DOI: 10.1016/j.jngse.2017.02.031
|
[16] |
卢义玉,柴成娟,周哲,等. 生物转化对煤层孔隙渗透性质的影响[J]. 采矿与安全工程学报,2021,38(1):165−172. LU Yiyu,CHAI Chengjuan,ZHOU Zhe,et al. Influence of bioconversion on pore permeability of coal seams[J]. Journal of Mining & Safety Engineering,2021,38(1):165−172.
|
[17] |
孙斌,李金珊,承磊,等. 低阶煤生物采气可行性:以二连盆地吉尔嘎朗图凹陷为例[J]. 石油学报,2018,39(11):1272−1278. SUN Bin,LI Jinshan,CHENG Lei,et al. The feasibility of biological gas recovery in low–rank coal:A case study of Jiergalangtu depression in Erlian Basin[J]. Acta Petrolei Sinica,2018,39(11):1272−1278. DOI: 10.7623/syxb201811007
|
[18] |
任付平,韩长胜,王玲欣,等. 微生物提高煤层气井单井产量技术研究与实践[J]. 石油钻采工艺,2016,38(3):395−399. REN Fuping,HAN Changsheng,WANG Lingxin,et al. Microbially enhanced CBM well production rate technology and its application[J]. Oil Drilling & Production Technology,2016,38(3):395−399.
|
[19] |
刘健,刘建民,苗彪,等. 200 L发酵罐中煤发酵产甲烷规律初步研究[J]. 能源与环保,2020,42(10):120−124. LIU Jian,LIU Jianmin,MIAO Biao,et al. Preliminary study on methane production by coal fermentation in 200 L fermentor[J]. China Energy and Environmental Protection,2020,42(10):120−124.
|
[20] |
苏现波,吴昱,夏大平,等. 温度对低煤阶煤生物甲烷生成的影响[J]. 煤田地质与勘探,2012,40(5):24−26. SU Xianbo,WU Yu,XIA Daping,et al. Effect of temperature on biological methane generation of low rank coal[J]. Coal Geology & Exploration,2012,40(5):24−26.
|
[21] |
刘琬玥,刘钦甫,刘霖松,等. 沁水盆地北部中高煤阶煤结构的FTIR特征研究[J]. 煤炭科学技术,2019,47(2):181−187. LIU Wanyue,LIU Qinfu,LIU Linsong,et al. Study on FTIR features of middle and high rank coal structure in north part of Qinshui Basin[J]. Coal Science and Technology,2019,47(2):181−187.
|
[22] |
赵广秀,刘硕,漆春,等. 红外光谱结合元素分析法研究SRB对煤的降解[J]. 湖北农业科学,2016,55(18):4671−4674. ZHAO Guangxiu,LIU Shuo,QI Chun,et al. Used fourier infrared spectroscopy and element analysis study on the degradation of coal by SRB[J]. Hubei Agricultural Sciences,2016,55(18):4671−4674.
|
[23] |
SAUER K,CAMPER A K,EHRLICH G D,et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm[J]. Journal of Bacteriology,2002,184(4):1140−1154. DOI: 10.1128/jb.184.4.1140-1154.2002
|
[24] |
FANG Heting,OBEROI A S,HE Zhiqing,et al. Ciprofloxacin−degrading Paraclostridium sp. isolated from sulfate−reducing bacteria−enriched sludge:Optimization and mechanism[J]. Water Research,2021,191(7):116808.
|
[25] |
ZHAO Zhiqiang,LI Yang,QUAN Xie,et al. Towards engineering application:Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research,2017,115:266−277. DOI: 10.1016/j.watres.2017.02.067
|
[26] |
KRISHNAMURTHI S,CHAKRABARTI T,STACKEBRANDT E. Re–examination of the taxonomic position of Bacillus silvestris Rheims et al. 1999 and proposal to transfer it to Solibacillus gen. nov. as Solibacillus silvestris comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(5):1054−1058. DOI: 10.1099/ijs.0.65742-0
|