MIN Feihu, XIANG Biwei, LIU Hui, ZHU Xiaojun. Numerical simulation on mechanism of thrust fault reactivation during mining[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 144-152. DOI: 10.3969/j.issn.1001-1986.2019.04.022
Citation: MIN Feihu, XIANG Biwei, LIU Hui, ZHU Xiaojun. Numerical simulation on mechanism of thrust fault reactivation during mining[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 144-152. DOI: 10.3969/j.issn.1001-1986.2019.04.022

Numerical simulation on mechanism of thrust fault reactivation during mining

Funds: 

National Natural Science Foundation of China(41472194)

More Information
  • Received Date: February 27, 2019
  • Published Date: August 24, 2019
  • It is a hot issue in mine disaster research about the activation of faults during the process of coal mining and excavation. In order to reveal the influence of coal mining on fault activation under different fault dip conditions, Xinji No.2 mine in Huainan coalfield was taken as an example, and numerical simulation with FLAC3D was used to systematically study the dynamic activation law of thrust faults during mining beside the faults, and to clarify the relationship among fault activation position and fault dip angle and excavated distance of working face. The results show that the fault activation is divided into three stages:Accumulation period, formation period and dynamic development period. As the working surface advances, the fault begins to activate when it is pushed to half the length of the working face, and the fault slip is the largest at the end of mining. As the fault dip angle increases, the smaller the dip angle, the earlier the fault layer begins to activate. The larger the dip angle, the larger the slip surface will be. It provides a theoretical basis and technical reference for the safe exploitation of coal resources in fault development areas.
  • [1]
    姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205-213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205-213.
    [2]
    姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188-2204.

    JIANG Yaodong,ZHAO Yixin. State of the art:In-vestigation on mechanism,forecast and control of coal bumps in china[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188-2204.
    [3]
    潘一山,王来贵,章梦涛,等. 断层冲击地压发生的理论与试验研究[J]. 岩石力学与工程学报,1998,17(6):642-649.

    PAN Yishan,WANG Laigui,ZHANG Mengtao,et al. The theoretical and testing study of fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(6):642-649.
    [4]
    蒋金泉,武泉林,曲华. 硬厚岩层下逆断层采动应力演化与断层活化特征[J]. 煤炭学报,2015,40(2):267-277.

    JIANG Jinquan,WU Quanlin,QU Hua. Characteristic of mining stress evolution and activation of the reverse fault below the hard-thick strata[J]. Journal of China Coal Soci-ety,2015,40(2):267-277.
    [5]
    李守国,吕进国,姜耀东,等. 逆断层不同倾角对采场冲击地压的诱导分析[J]. 采矿与安全工程学报,2014,31(6):869-875.

    LI Shouguo,LYU Jinguo,JIANG Yaodong,et al. Coal bump inducing rule by dip angles of thrust fault[J]. Journal of Mining & Safety Engineering,2014,31(6):869-875.
    [6]
    代进,蒋金泉. 上下盘开采顺序对断层煤柱采动应力的影响[J]. 采矿与安全工程学报,2016,33(1):35-41.

    DAI Jin,JIANG Jinquan. Influence of mining sequence of hanging wall and foot wall on mining-induced stress of fault coal pillar[J]. Journal of Mining & Safety Engineering,2016,33(1):35-41.
    [7]
    焦振华,赵毅鑫,姜耀东,等. 采动诱发断层损伤滑移及其影响因素敏感性分析[J]. 煤炭学报,2017,42(增刊1):36-42.

    JIAO Zhenhua,ZHAO Yixin,JIANG Yaodong,et al. Fault damage induced by mining and its sensitivity analysis of influencing factors[J]. Journal of China Coal Society,2017,42(S1):36-42.
    [8]
    张卫强,孙强,朱术云,等. 采动条件下顶板逆断层失稳-活化机制分析[J]. 煤矿安全,2013,44(3):179-182.

    ZHANG Weiqiang,SUN Qiang,ZHU Shuyun,et al. Analysis of roof reverse fault instability-reactivation mechanism under mining[J]. Safety in Coal Mines,2013,44(3):179-182.
    [9]
    王涛,由爽,高宇. 推进方式对断层围岩应力演化规律的影响[J]. 采矿与安全工程学报,2017,34(2):276-281.

    WANG Tao,YOU Shuang,GAO Yu. The influence of different mining modes on the evolution law of stress in fault surrounding rock[J]. Journal of Mining & Safety Engineering, 2017,34(2):276-281.
    [10]
    李振雷,窦林名,蔡武,等. 深部厚煤层断层煤柱型冲击矿压机制研究[J]. 岩石力学与工程学报,2013,32(2):333-342.

    LI Zhenlei,DOU Linming,CAI Wu,et al. Fault-pillar induced rock burst mechanism of thick coal seam in deep mining[J]. Chinese Journal of Rock Mechanics and Engi-neering,2013,32(2):333-342.
    [11]
    徐晓惠,吕进国,刘闯,等. 采动影响下逆断层特征参数对断层活化的作用规律[J]. 重庆大学学报,2015,38(3):107-115.

    XU Xiaohui,LYU Jinguo,LIU Chuang,et al. Influence law of fault activation induced by coal extraction based on characteristic parameters of thrust fault[J]. Journal of Chongqing University, 2015,38(3):107-115.
    [12]
    姜耀东,王涛,赵毅鑫,等. 采动影响下断层活化规律的数值模拟研究[J]. 中国矿业大学学报,2013,42(1):1-5.

    JIANG Yaodong,WANG Tao,ZHAO Yixin,et al. Numerical simulation of fault activation pattern induced by coal extrac-tion[J]. Journal of China University of Mining & Technology,2013,42(1):1-5.
    [13]
    李士栋,雷瑞德. 采动影响下断层冲击危险数值模拟[J]. 煤矿安全,2017,48(3):40-43.

    LI Shidong,LEI Ruide. Numerical simulation of rock burst risk induced by fault under mining[J]. Safety in Coal Mines,2017,48(3):40-43.
    [14]
    张国龙,蒋金泉,张培鹏,等. 正断层活化影响下覆岩结构演化规律[J]. 煤炭技术,2017,36(9):48-51.

    ZHANG Guolong,JIANG Jinquan,ZHANG Peipeng,et al. Evolutionary laws of overlying strata structure under influence of normal fault activation[J]. Coal Technology,2017,36(9):48-51.
    [15]
    赵毅鑫,卢志国,朱广沛,等. 考虑主应力偏转的采动诱发断层活化机理研究[J]. 中国矿业大学学报,2018,47(1):73-80.

    ZHAO Yixin,LU Zhiguo,ZHU Guangpei,et al. Fault reactive induced by the principal stress rotation for the un-derground coal mining[J]. Journal of China University of Mining & Technology,2018,47(1):73-80.
    [16]
    朱广安,窦林名,刘阳,等. 采动影响下断层滑移失稳的动力学分析及数值模拟[J]. 中国矿业大学学报,2016,45(1):27-33.

    ZHU Guang'an,DOU Linming,LIU Yang,et al. Dynamic analysis and numerical simulation of fault slip instability induced by coal extraction[J]. Journal of China University of Mining & Technology,2016,45(1):27-33.
    [17]
    谢和平,周宏伟,王金安,等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J]. 岩石力学与工程学报,1999,18(4):397-401.

    XIE Heping,ZHOU Hongwei,WANG Jin'an,et al. Application of FLAC to predict ground surface displacements due to coal extraction and its comparative analysis[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(4):397-401.
    [18]
    周大伟. 煤矿开采沉陷中岩土体的协同机理及预测[D]. 徐州:中国矿业大学,2014.
  • Related Articles

    [1]SUN Wenbin, HAO Jianbang, DAI Xianzheng, KONG Lingjun. Response mechanism characteristics of mining-induced fault activation[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 12-20. DOI: 10.12363/issn.1001-1986.23.09.0525
    [2]LIU Xiaoning, LUO Jinhui, MA Xiaoli, DONG Zhibo. Data modeling and analysis of coal resources based on 3DMine software[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 72-78. DOI: 10.3969/j.issn.1001-1986.2019.02.012
    [3]LI Gang. Detection technique of transmission in-seam wave for concealed fault in working face of underground coal mine[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 142-145. DOI: 10.3969/j.issn.1001-1986.2016.05.027
    [4]SHI Xiuchang, JU Yuanjiang, MENG Zhaoping. Characteristics of in-situ stress field in Xinji coal mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 68-72. DOI: 10.3969/j.issn.1001-1986.2014.06.014
    [5]SHI Xiuchang, JU Yuanjiang, MENG Zhaoping. Characteristics of in-situ stress field in Xinji coal mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 64-67. DOI: 10.3969/j.issn.1001-1986.2014.06.013
    [6]YANG Wei, YANG Linlin, AN Jing, ZHANG Shuguang. Numerical simulation and analysis of mine ventilation temperature field of integrated mining area in high temperature mine[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(5): 55-58. DOI: 10.3969/j.issn.1001-1986.2011.05.013
    [7]MIAO Lin-tian, YAO Jian-ming, LU: Ting-ting, DU Rong-jun. Trend analysis of the No.5-2 coal thickness and it’s bottom altitude in northern Shenmu mining area[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(3): 12-15.
    [8]LI Yao, ZHU Wen, CHENG Hai-yan. Research on distribution regularities of small structures in Coal Seam 11-2,Panyi Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(5): 17-20.
    [9]LIU Qing-wen, LIU Yan-ling, HAN De-pin. Two dimension numerical modeling of electrical penetrative detection in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 48-52.
    [10]HAN De-pin, SHI ya-ding, LIU Qing-wen. One dimension numerical modeling of electrical penetrative detection in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 52-54.
  • Cited by

    Periodical cited type(17)

    1. 李昊,李叶繁,魏长婧,王磊杰,康利军,姜川. 基于SBAS-InSAR技术的登封市潜在地质灾害识别研究. 河南科学. 2024(08): 1170-1178 .
    2. 汪晨星,史凌亚,李瑞东. 基于Stacking-InSAR的煤矿沉降监测与综采面参数反演. 陕西煤炭. 2024(10): 14-20 .
    3. 张学辉,崔振东,张中俭,赵磊磊,魏涛,刘东旭,王龙灿. 基于SBAS-InSAR技术的新疆某煤矿长时序地表形变监测与分析. 新疆地质. 2024(03): 459-465 .
    4. 姜川,王磊杰,樊高强,李昊,李叶繁,苑雨,张曦. 基于SBAS-InSAR的郑州煤炭矿区地表沉降监测及演化规律分析. 中国煤炭. 2024(10): 158-165 .
    5. 任瑶瑶,刘国林,牛冲,韩宇,周一鸣. 基于MSBAS InSAR技术的沧州市地表形变监测与分析. 地球物理学进展. 2023(02): 588-599 .
    6. 孙晓云. 基于InSAR和微震技术矿区非法开采事件监测技术探讨和应用. 内蒙古煤炭经济. 2023(03): 113-117 .
    7. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    8. 孙军,张锦. 基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测. 煤矿安全. 2022(03): 162-169 .
    9. 陈宗玥. 基于图像识别的大型建筑钢结构形变监测研究. 测绘技术装备. 2022(01): 17-21 .
    10. 高宏伟,史先琳,陈晨,尹勇,戴可人. 云南漾濞地震地表二维形变提取. 昆明理工大学学报(自然科学版). 2022(02): 57-64 .
    11. 王凤云,陶秋香,陈洋,韩宇,郭在洁. 基于InSAR的煤矿采空区地表形变监测与预警. 煤矿安全. 2022(06): 195-203 .
    12. 贺黎明,裴攀科,吴立新,张香凝. 基于时序InSAR的矿区滑坡前地表运动特征分析. 东北大学学报(自然科学版). 2022(09): 1314-1321+1368 .
    13. 胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
    14. 刘健,周皓,张恩正. 基于机器学习的煤矿开采沉陷自动化监测系统. 信息技术. 2022(11): 143-148+154 .
    15. 白洁. 基于机器视觉的测绘工程地面位移形变测量方法. 经纬天地. 2021(02): 93-97 .
    16. 姚鑫,吴付英. 基于GIS技术的矿区开采沉陷形变监测系统设计. 矿产与地质. 2021(03): 549-553+573 .
    17. 高文,王华,侯凌志. 矿山地质灾害监测方法与自动化监测预警系统应用. 西部资源. 2020(06): 66-68 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (100) PDF downloads (14) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return