LI Ruirui, CHEN Luwang, OU Qinghua, CHEN Yifei, WANG Yingxin, GE Rutao, PENG Zhihong. Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 179-185,194. DOI: 10.3969/j.issn.1001-1986.2020.06.024
Citation: LI Ruirui, CHEN Luwang, OU Qinghua, CHEN Yifei, WANG Yingxin, GE Rutao, PENG Zhihong. Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 179-185,194. DOI: 10.3969/j.issn.1001-1986.2020.06.024

Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks

Funds: 

National Natural Science Foundation of China(41972256)

More Information
  • Received Date: July 23, 2020
  • Revised Date: September 29, 2020
  • Published Date: December 24, 2020
  • The height of the fractured water-conducting zone(FWCZ) is vital to the mine safety and the ecological environment protection of the mining areas. Previous numerical simulation method which judge the range of the fractured water-conducting zone through plastic zone can not fully reflect the failure mechanism of overburden. In order to predict the height of FWCZ more accurately, the fracture criterion of rock in the presence of native fracture is proposed by combining the fracture criterion of stress intensity factor with the Mohr-Coulomb yielding criterion. Native fracture field was constructed with self-affine fractal model and the finite element analysis software COMSOL Multiphysics was utilized to apply the native fracture field and the rock fracture criterion to the numerical simulation of the FWCZ's development in Qingdong Coal Mine. The results show that the height of FWCZ reaches 92.5 m when considering the native fractures. In contrast with the traditional "plastic zone" method and empirical formula method, the ratio of the height of the FWCZ to the mining height in the proposed method is closer to the field measured value, indicating that the fracture field generated by the self-affine fractal model can appropriately simulate the complex and disordered distribution of native fractures in rock mass. Therefore, the proposed method could better reflect the development mechanism of fractured water-conducting zone.
  • [1]
    GUO Wenbing,ZHAO Gaobo,LOU Gaozhong,et al. A new method of predicting the height of the fractured water-conducting zone due to high-Intensity longwall coal mining in China[J]. Rock Mechanics and Rock Engineering,2019,52(8):2789-2802.
    [2]
    LIU Yu,LIU Qimeng,LI Wenping,et al. Height of water-conducting fractured zone in coal mining in the soil-rock composite structure overburdens[J]. Environmental Earth Sciences,2019,78:242.
    [3]
    LAMOREAUX J W,WU Qiang,ZHOU Wanfang. New development in theory and practice in mine water control in China[J]. Carbonates and Evaporites,2014,29(2):141-145.
    [4]
    王虎,岳建华,姜志海,等. 逐阶段安全提高巨厚松散含水层下煤层开采上限研究[J]. 煤田地质与勘探,2013,41(6):61-63.

    WANG Hu,YUE Jianhua,JIANG Zhihai,et al. Safely improving by stage the upper limit under extremely thick loose aquifer[J]. Coal Geology & Exploration,2013,41(6):61-63.
    [5]
    裴文明,张慧,鞠昌华,等. 基于韦伯-费希纳定律的淮南采煤沉陷水域水环境综合预警评价[J]. 煤田地质与勘探,2020,48(3):1-7.

    PEI Wenming,ZHANG Hui,JU Changhua,et al. Water environment comprehensive forewarning for waterlogged area in Huainan based on Weber-Fechner law[J]. Coal Geology & Exploration,2020,48(3):1-7.
    [6]
    NAN Zhou,MENG Li,ZHANG Jixiong,et al. Roadway backfill method to prevent geohazards induced by room and pillar mining:A case study in Changxing coal mine,China[J]. Natural Hazards and Earth System Sciences,2016,16(12):2473-2484.
    [7]
    刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970-1976.

    LIU Yingfeng,WANG Shidong,WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.
    [8]
    MIAO Xiexing,CUI Ximin,WANG Jinan,et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology,2011,120:32-39.
    [9]
    许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380-385.

    XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380-385.
    [10]
    ZHAO Dekang,WU Qiang. An approach to predict the height of fractured water-conducting zone of coal roof strata using random forest regression[J]. Scientific Reports,2018,8:10986.
    [11]
    LI Sheng,FAN Chaojun,LUO Mingkun,et al. Structure and deformation measurements of shallow overburden during top coal caving longwall mining[J]. International Journal of Mining Science and Technology,2017,27(6):1081-1085.
    [12]
    王世东,谢伟,罗利卜. 霍洛湾煤矿22101工作面顶板两带发育规律[J]. 煤田地质与勘探,2009,37(3):38-40.

    WANG Shidong,XIE Wei,LUO Libo. Developmental rules of the hydraulic fractured zone of working face 22101 in Huoluowan coal mine[J]. Coal Geology & Exploration,2009,37(3):38-40.
    [13]
    陈陆望,桂和荣,李一帆. UDEC模拟厚松散层及超薄覆岩条件下开采防水煤柱覆岩突水可能性[J]. 水文地质工程地质,2007,34(1):53-56.

    CHEN Luwang,GUI Herong,LI Yifan. UDEC simulation of water inrush possibility of mining in waterproof coal pillar under the thick loose layer and ultra-thin overburden[J]. Hydrogeology & Engineering Geology,2007,34(1):53-56.
    [14]
    李剑. 含水层下矸石充填采煤覆岩导水裂隙演化机理及控制研究[D]. 徐州:中国矿业大学,2013. LI Jian. Evolution mechanism and control of water-flowing fracture with gangue backfill under aquifer in coal mines[D]. Xuzhou:China University of Mining and Technology,2013.
    [15]
    赵先涛. 重庆地区典型岩石损伤断裂特性实验研究[D]. 重庆:重庆交通大学,2015.

    ZHAO Xiantao. Testing study on damage and fracture properties of typical rock in Chongqing[D]. Chongqing:Chongqing Jiaotong University,2015.

Catalog

    Article Metrics

    Article views (161) PDF downloads (28) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return