LUO Zhongqin, LIU Peng, MENG Fanbin. Research and application of the prediction method for CBM enrichment area of low rank coal[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 251-257. DOI: 10.3969/j.issn.1001-1986.2021.06.030
Citation: LUO Zhongqin, LIU Peng, MENG Fanbin. Research and application of the prediction method for CBM enrichment area of low rank coal[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 251-257. DOI: 10.3969/j.issn.1001-1986.2021.06.030

Research and application of the prediction method for CBM enrichment area of low rank coal

More Information
  • Received Date: March 09, 2021
  • Revised Date: July 07, 2021
  • Published Date: December 24, 2021
  • The exploration of low rank coal coalbed methane(CBM) faces the problems of low resource exploration rate and low single well production. And medium and low rank coal CBM exploration is still in the primary stage. In order to improve the predition accuracy of the low rank coal CBM enrichment area, the laboratory test data of 652 coal samples from 56 wells in Hancheng, Jincheng Baode, Ji'ergalangtu Qinshui Basin, Huainan, Huaibei and other places were collected to compare the relationship between gas content and elastic parameters of high, medium and low rank coal samples. The results indicated that the correlation between coal seam gas content and elastic parameters of different coal rank is consistent. And density is more sensitive to the changes of gas content of low rank coal than that of medium and high rank coal. It is considered that low coal-rank CBM reservoirs have the basis for identification using geophysical methods. On this basis, the 3D seismic data of the Ji'ergalangtu depression was selected and the pre-stack elastic modulus parameter inversion method was applied to predict its coal-bed methane enrichment area in the Ⅳ coal group of the Lower Cretaceous Saihantala Formation with a total area of 101 km2, which provides a high-quality construction area for the next development. The coincidence rate between the predicted results and gas content test results was 83.3%, which further proved that it was feasible to detect the low rank coal CBM enrichment area by prestack elastic parameters inversion of relative change. The research results have certain guiding significance for the exploration and development of low rank coal CBM.
  • [1]
    叶建平, 陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术, 2016, 44(1): 24–28.

    YE Jianping, LU Xiaoxia. Development status and technical progress of China coalbed methane industry[J]. Coal Science and Technology, 2016, 44(1): 24–28.
    [2]
    白振瑞, 张抗. 中国煤层气现状分析及对策探讨[J]. 中国石油勘探, 2015, 20(5): 73–80. DOI: 10.3969/j.issn.1672-7703.2015.05.008

    BAI Zhenrui, ZHANG Kang. Analysis of China's CBM conditions[J]. China Petroleum Exploration, 2015, 20(5): 73–80. DOI: 10.3969/j.issn.1672-7703.2015.05.008
    [3]
    穆福元, 仲伟志, 赵先良, 等. 中国煤层气产业发展战略思考[J]. 天然气工业, 2015, 35(6): 110–116. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201506021.htm

    MU Fuyuan, ZHONG Weizhi, ZHAO Xianliang, et al. Strategies for the development of CBM gas industry in China[J]. Natural Gas Industry, 2015, 35(6): 110–116. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201506021.htm
    [4]
    申宝宏, 刘见中, 雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术, 2015, 43(2): 1–4. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201502001.htm

    SHEN Baohong, LIU Jianzhong, LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology, 2015, 43(2): 1–4. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201502001.htm
    [5]
    祁雪梅. 煤层气储层地震属性响应特征及应用[D]. 徐州: 中国矿业大学, 2013.

    QI Xuemei. Coalbed methane reservoir seismic response characteristics and applications[D]. Xuzhou: China University of Mining and Technology, 2013.
    [6]
    张延庆, 程增庆. 用地震资料预测煤层气储层参数的方法初探[J]. 煤田地质与勘探, 2002, 30(4): 24–26. DOI: 10.3969/j.issn.1001-1986.2002.04.009

    ZHANG Yanqing, CHENG Zengqing. Discussion on coal reservoir parameter prediction using seismic technology[J]. Coal Geology & Exploration, 2002, 30(4): 24–26. DOI: 10.3969/j.issn.1001-1986.2002.04.009
    [7]
    胡朝元, 彭苏萍, 赵士华, 等. 煤层气储层参数多信息综合定量预测方法[J]. 煤田地质与勘探, 2005, 33(1): 28–32. DOI: 10.3969/j.issn.1001-1986.2005.01.009

    HU Chaoyuan, PENG Suping, ZHAO Shihua, et al. The qualitative prediction of the coalbed gas reservoir parameters[J]. Coal Geology & Exploration, 2005, 33(1): 28–32. DOI: 10.3969/j.issn.1001-1986.2005.01.009
    [8]
    林建东, 张兴平. 叠前弹性模量法三参数反演预测煤层气、页岩气富集区[C]//中国地质学会, 云南省地质学会. 中国地质学会2013年学术年会论文摘要汇编, 2013: 400–403.

    LIN Jianping, ZHANG Xingping. Prestack elastic modulus method three parameter inversion to predict coalbed methane and shale gas enrichment areas[C]//Geological Society of China, Yunnan Geological Society. 2013 Academic Annual Meeting of Geological Society of China, 2013: 400–403.
    [9]
    董银萍, 刘勇, 申有义, 等. 基于匹配追踪分解的流体活动因子预测煤层气甜点区[J]. 煤田地质与勘探, 2018, 46(5): 90–96. DOI: 10.3969/j.issn.1001-1986.2018.05.014

    DONG Yinping, LIU Yong, SHEN Youyi, et al. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor[J]. Coal Geology & Exploration, 2018, 46(5): 90–96. DOI: 10.3969/j.issn.1001-1986.2018.05.014
    [10]
    王树威. 地震勘探技术在煤系非常规气富集区预测中的应用[J]. 煤田地质与勘探, 2019, 47(4): 159–164. DOI: 10.3969/j.issn.1001-1986.2019.04.024

    WANG Shuwei. Application of seismic exploration technology in forecasting unconventional gas enrichment area of coal measures[J]. Coal Geology & Exploration, 2019, 47(4): 159–164. DOI: 10.3969/j.issn.1001-1986.2019.04.024
    [11]
    程彦, 张华, 王敏. 弹性波阻抗反演在煤层气储层预测中的应用[J]. 煤田地质与勘探, 2011, 39(2): 70–73. DOI: 10.3969/j.issn.1001-1986.2011.02.016

    CHENG Yan, ZHANG Hua, WANG Min. The application of elastic impedance inversion in prediction of CBM reservoir[J]. Coal Geology & Exploration, 2011, 39(2): 70–73. DOI: 10.3969/j.issn.1001-1986.2011.02.016
    [12]
    陈信平, 霍全明, 林建东, 等. 煤层气储层含气量与其弹性参数之间的关系: 思考与初探[J]. 地球物理学报, 2013, 56(8): 2837–2848. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308033.htm

    CHEN Xinping, HUO Quanming, LIN Jiandong, et al. The relation between CBM content and the elastic parameters of CBM reservoirs: Reasoning and initial probing[J]. Chinese Journal of Geophysics, 2013, 56(8): 2837–2848. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308033.htm
    [13]
    周志斌. 中国非常规天然气产业发展趋势、挑战与应对策略[J]. 天然气工业, 2014, 34(2): 12–17. DOI: 10.3787/j.issn.1000-0976.2014.02.002

    ZHOU Zhibin. Trends of challenges in and corresponding strategies for unconventional natural gas industry in China[J]. Natural Gas Industry, 2014, 34(2): 12–17. DOI: 10.3787/j.issn.1000-0976.2014.02.002
    [14]
    刘洪林, 李景明, 王红岩, 等. 浅议我国低煤阶地区的煤层气勘探思路[J]. 煤炭学报, 2006, 31(1): 50–53. DOI: 10.3321/j.issn:0253-9993.2006.01.011

    LIU Honglin, LI Jingming, WANG Hongyan, et al. Discussion on finding coalbed methane in low rank coal in China[J]. Journal of China Coal Society, 2006, 31(1): 50–53. DOI: 10.3321/j.issn:0253-9993.2006.01.011
    [15]
    温声明, 周科, 鹿倩. 中国煤层气发展战略探讨: 以中石油煤层气有限责任公司为例[J]. 天然气工业, 2019, 39(5): 129–136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905019.htm

    WEN Shengming, ZHOU Ke, LU Qian. A discussion on CBM development strategies in China based upon a case study of PetroChina Coalbed Methane Co., Ltd[J]. Natural Gas Industry, 2019, 39(5): 129–136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905019.htm
    [16]
    穆福元, 贾承造, 穆龙新, 等. 我国煤层气的开发模式研究[J]. 非常规油气, 2014, 1(1): 41–46.

    MU Fuyuan, JIA Chengzao, MU Longxin, et al. Coalbed methane development modes in China[J]. Unconventional Oil and Gas, 2014, 1(1): 41–46.
    [17]
    王佟, 王庆伟, 傅雪海. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探, 2014, 42(1): 24–27. DOI: 10.3969/j.issn.1001-1986.2014.01.005

    WANG Tong, WANG Qingwei, FU Xuehai. The significance and the systematic research of the unconventional gas in coal measures[J]. Coal Geology & Exploration, 2014, 42(1): 24–27. DOI: 10.3969/j.issn.1001-1986.2014.01.005
    [18]
    欧阳永林, 林建东, 任森林, 等. 利用弹性模量参数的反演进行煤层气预测方法及系统: ZL 2013 1 0329013.9[P]. 2013-07-31.

    OUYANG Yonglin, LIN Jiandong, REN Linlin, et al. CBM prediction method and system using inversion of elastic modulus parameters: ZL 2013 1 0329013.9[P]. 2013-07-31.
    [19]
    中国石油天然气股份有限公司勘探开发研究院廊坊分院, 中国煤炭地质总局地球物理勘探研究院. 弹性模量法三参量反演软件: 2014SR049555[P]. 2013-04-11.

    Langfang Branch of exploration and Development Research Institute of CNPC, Geophysical Exploration Research Institute of China Coal Geology administration. Three parameter inversion software of elastic modulus method. 2014SR049555[P]. 2013-04-11.
    [20]
    孙粉锦, 李五忠, 孙钦平, 等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气勘探[J]. 石油学报, 2017, 38(5): 485–492. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705001.htm

    SUN Fenjin, LI Wuzhong, SUN Qinping, et al. Low-rank coalbed methane exploration in Jiergalangtu sag, Erlian Basin[J]. Acta Petrolei Sinica, 2017, 38(5): 485–492. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705001.htm
    [21]
    东振, 鲍清英, 张继东, 等. 低煤阶厚煤层水平井方位及选层: 以吉尔嘎朗图地区为例[J]. 煤炭学报, 2017, 42(增刊2): 417–427.

    DONG Zhen, BAO Qingying, ZHANG Jidong, et al. Optimization method of horizontal well orientation and layer selection in low-rank thick coal seam: A case study of Ji'ergalangtu area[J]. Journal of China Coal Society, 2017, 42(Sup. 2): 417–427.
  • Related Articles

    [1]XIE Haijun, LI Zhiqiang, LI Sheng. Finite element 2D forward modeling of DC method with line source[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 194-199. DOI: 10.3969/j.issn.1001-1986.2019.01.030
    [2]LIU Fangdi, WANG Xuben, JIAO Jian, LUO Yixiang, HU Qinglong. 2.5D electromagnetic profiling forward modeling with finite difference method[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 79-84. DOI: 10.3969/j.issn.1001-1986.2012.01.019
    [3]SHEN Jun, ZHANG Jian. Analysis and solution to boundary element of seepage in engineering[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(3): 59-62.
    [4]LI Qing-chun, SHAO Guang-zhou, LI Bin. Mixed boundary and frequency dispersion suppressing in elastic wave numerical simulation[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 73-77.
    [5]ZHENG Shu-yan, LI Zhan-bin, LI Fu-sheng. Study of No.2 landslide erosion in Tongwang highway by numerical simulation of elastic-plastic finite element[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 52-55.
    [6]LI Jin-xuan. Calculation of seepage for horizontal drainage project of slope[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(2): 31-33.
    [7]LIU Qing-wen, LIU Yan-ling, HAN De-pin. Two dimension numerical modeling of electrical penetrative detection in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 48-52.
    [8]YIN Shang-xian, LI Yu-lin. The solving methods research of response functionin groundwater management[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 33-35.
    [9]HAN De-pin, SHI ya-ding, LIU Qing-wen. One dimension numerical modeling of electrical penetrative detection in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 52-54.
    [10]Liu Jidong. THE TOPOGRAPHIC CORRECTION OF THE ELECTRIC SOUNDING DATA BY THE BOUNDARY ELEMENT METHOD FOR ANOMALOUS POTENTIAL[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 54-56.

Catalog

    Article Metrics

    Article views (128) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return