Citation: | ZHANG Yu, LI Yong, WANG Yanbin, WANG Zhuangsen, ZHAO Shihu, HAN Wenlong. SAXS-based nano-scale pore structure characteristics of coals with different metamorphic degrees[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 142-150. DOI: 10.3969/j.issn.1001-1986.2021.06.017 |
[1] |
SAKUROVS R, DAY S, WEIR S. Relationships between the critical properties of gases and their high pressure sorption behavior on coals[J]. Energy & Fuels, 2010, 24(3): 1781–1787. http://www.onacademic.com/detail/journal_1000036308002610_38a5.html
|
[2] |
HE Lilin, MELNICHENKO Y B, MASTALERZ M, et al. Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering[J]. Energy & Fuels, 2012, 26(3): 1975–1983. http://www.onacademic.com/detail/journal_1000036560945810_57f3.html
|
[3] |
MELNICHENKO Y B, HE Lilin, SAKUROVS R, et al. Accessibility of pores in coal to methane and carbon dioxide[J]. Fuel, 2012, 91(1): 200–208. DOI: 10.1016/j.fuel.2011.06.026
|
[4] |
SAKUROVS R, HE Lilin, MELNICHENKO Y B, et al. Pore size distribution and accessible pore size distribution in bituminous coals[J]. International Journal of Coal Geology, 2012, 100: 51–64. DOI: 10.1016/j.coal.2012.06.005
|
[5] |
赵毅鑫, 彭磊. 煤纳米孔径与分形特征的同步辐射小角散射[J]. 科学通报, 2017, 62(21): 2416–2427.
ZHAO Yixin, PENG Lei. Investigation on the size and fractal dimension of nano-pore in coals by synchrotron small angle X-ray scattering[J]. Chinese Science Bulletin, 2017, 62(21): 2416–2427.
|
[6] |
唐书恒, 蔡超, 朱宝存, 等. 煤变质程度对煤储层物性的控制作用[J]. 天然气工业, 2008, 28(12): 30–33. DOI: 10.3787/j.issn.1000-0976.2008.12.007
TANG Shuheng, CAI Chao, ZHU Baocun, et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs[J]. Natural Gas Industry, 2008, 28(12): 30–33. DOI: 10.3787/j.issn.1000-0976.2008.12.007
|
[7] |
王庆伟, 王勤旺. 不同煤阶煤层气运移通道的差异性研究[J]. 中国煤炭地质, 2012, 24(4): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201204005.htm
WANG Qingwei, WANG Qinwang. Migration pathway discrepancy study of CBM in coal reservoirs with different coal ranks[J]. Coal Geology of China, 2012, 24(4): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201204005.htm
|
[8] |
陈跃, 汤达祯, 田霖, 等. 煤变质程度对中低阶煤储层孔裂隙发育的控制作用[J]. 天然气地球科学, 2017, 28(4): 611–621. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704016.htm
CHEN Yue, TANG Dazhen, TIAN Lin, et al. Coal metamorphism controlling regulation on the development of pores and fractures in low–medium rank coal reservoirs[J]. Natural Gas Geoscience, 2017, 28(4): 611–621. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704016.htm
|
[9] |
李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(增刊1): 142–156. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S1016.htm
LI Xiangchun, LI Zhongbei, ZHANG Liang, et al. Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J]. Journal of China Coal Society, 2019, 44(Sup. 1): 142–156. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S1016.htm
|
[10] |
BOUSIGE C, GHIMBEU C M, VIX–GUTERL C, et al. Realistic molecular model of kerogen's nanostructure[J]. Nature Materials, 2016, 15(5): 576–582. DOI: 10.1038/nmat4541
|
[11] |
LIU Yu, ZHU Yanming, LI Wu, et al. Ultra micropores in macromolecular structure of subbituminous coal vitrinite[J]. Fuel, 2017, 210: 298–306. DOI: 10.1016/j.fuel.2017.08.069
|
[12] |
CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J]. Fuel, 2012, 95: 371–385. DOI: 10.1016/j.fuel.2011.12.010
|
[13] |
李志宏, 吴东, 孙予罕, 等. 小角X射线散射模糊数据解析方法[J]. 煤炭转化, 2001, 24(1): 11–14. DOI: 10.3969/j.issn.1004-4248.2001.01.003
LI Zhihong, WU Dong, SUN Yuhan, et al. Analytic methods applied to slit smeared intensity data of SAXS[J]. Coal Conversion, 2001, 24(1): 11–14. DOI: 10.3969/j.issn.1004-4248.2001.01.003
|
[14] |
LI Zhihong, GONG Y J, WU D, et al. A negative deviation from Porod's law in SAXS of organo-MSU-X[J]. Microporous and Mesoporous Materials, 2001, 46: 75–80. DOI: 10.1016/S1387-1811(01)00292-X
|
[15] |
XIE Fei, LI Zhihong, WANG Wenjia, et al. In-situ SAXS study of pore structure during carbonization of non–caking coal briquettes[J]. Fuel, 2020, 262(C): 116547.
|
[16] |
RADLINSKI A P, MASTALERZ M, HINDE A L, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. International Journal of Coal Geology, 2004, 59(3/4): 245–271. http://www.onacademic.com/detail/journal_1000034582659810_5c4c.html
|
[17] |
宋晓夏, 唐跃刚, 李伟, 等. 基于小角X射线散射构造煤孔隙结构的研究[J]. 煤炭学报, 2014, 39(4): 719–724.
SONG Xiaoxia, TANG Yuegang, LI Wei, et al. Pore structure in tectonically deformed coals by small angle X–ray scattering[J]. Journal of China Coal Society, 2014, 39(4): 719–724.
|
[18] |
BALE H D, SCHMIDT P W. Small-angle X-Ray-scattering investigation of submicroscopic porosity with fractal properties[J]. Physical Review Letters, 1984, 53: 596–599. DOI: 10.1103/PhysRevLett.53.596
|
[19] |
REICH M H, SNOOK I K, WAGENFELD H K. A fractal interpretation of the effect of drying on the pore structure of Victorian brown coal[J]. Fuel, 1992, 71(6): 669–672. DOI: 10.1016/0016-2361(92)90170-S
|
[20] |
聂百胜, 王科迪, 樊堉, 等. 基于小角X射线散射技术计算不同孔形的煤孔隙特征比较研究[J]. 矿业科学学报, 2020, 5(3): 284–290.
NIE Baisheng, WANG Kedi, FAN Yu, et al. The comparative study on calculation of coal pore characteristics of different pore shapes based SAXS[J]. Journal of Mining Science and Technology, 2020, 5(3): 284–290.
|
[21] |
李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 2019, 44(4): 1188–1196. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904025.htm
LI Yang, ZHANG Yugui, ZHANG Lang, et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption[J]. Journal of China Coal Society, 2019, 44(4): 1188–1196. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904025.htm
|
[22] |
PRINZ D, LITTKE R. Development of the micro–and ultra–microporous structure of coals with rank as deduced from the accessibility to water[J]. Fuel, 2005, 84(12/13): 1645–1652. http://www.onacademic.com/detail/journal_1000034016728810_ea5a.html
|
[23] |
MATTHIAS T, KATSUMI K, ALEXANDER V, et al. Physisorption of gases with special reference to the evaluation of surface area and pore size[R]. IUPAC Technical Report, 2015, 87(9/10): 1051–1069.
|
[24] |
刘阳, 姚素平, 汤中一. 利用SAXS表征不同变质程度煤纳米孔隙特征[J]. 高校地质学报, 2019, 25(1): 108–115. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201901011.htm
LIU Yang, YAO Suping, TANG Zhongyi. Characterization of nanopore of different metamorphic coals by SAXS[J]. Geological Journal of China Universities, 2019, 25(1): 108–115. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201901011.htm
|
[25] |
张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40–44. DOI: 10.3321/j.issn:0253-9993.2001.01.009
ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001, 26(1): 40–44. DOI: 10.3321/j.issn:0253-9993.2001.01.009
|
[26] |
阎文英, 石呈龙. 论罗茨盆地褐煤的凝胶化作用和丝炭化作用[J]. 西安矿业学院学报, 1987, 4(3): 11–18.
YAN Wenying, SHI Chenglong. On the gelatification and fusinitization of the brown coal in Luoci Basin[J]. Journal of Xi'an Mining Institute, 1987, 4(3): 11–18.
|
[27] |
唐跃刚, 王洁. 反映褐煤成熟度的新指标: 凝胶率[J]. 煤田地质与勘探, 1990, 18(4): 25–28. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT199004007.htm
TANG Yuegang, WANG Jie. A new index of lignite maturity: Gel rate[J]. Coal Geology & Exploration, 1990, 18(4): 25–28. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT199004007.htm
|
[28] |
LI Wu, ZHU Yanming. Structural characteristics of coal vitrinite during pyrolysis[J]. Energy & Fuels, 2014, 28(6): 3645–3654. DOI: 10.1021/ef500300r
|
[29] |
LIU Yu, ZHU Yanming, LIU Shimin, et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology, 2018, 199: 19–30. DOI: 10.1016/j.coal.2018.09.012
|