HOU Jinxiu, WANG Baojun, ZHANG Yugui, ZHANG Jinchun. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 75-81. DOI: 10.3969/j.issn.1001-1986.2017.05.014
Citation: HOU Jinxiu, WANG Baojun, ZHANG Yugui, ZHANG Jinchun. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 75-81. DOI: 10.3969/j.issn.1001-1986.2017.05.014

Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation

Funds: 

National Natural Science Foundation of China(41372157)

More Information
  • Received Date: August 12, 2017
  • Published Date: October 24, 2017
  • In order to investigate the evolution of the structure characteristics of micropore and mesopore of different rank coal and the cause of their formation, 7 different metamorphic coal samples collected from North China Permian coal basin were tested using low-pressure nitrogen and carbon dioxide adsorption techniques respectively. The change rule of pore size distribution(PSD), pore volume(PV)and specific surface area(SSA)of micropores(pore diameter less than 2 nm) and mesopores(pore diameter lies in 2~50 nm) with different metamorphic degrees of coal were analyzed using density function theory(DFT), Dubinin-Astakhov(DA)method, Dubinin-Radushkevich (DR) method, BET and BJH formula. Then the cause of the formation of micropores and mesopores was discussed. The results show that: PV and SSA of micropores are positively correlated with its vitrinite reflectance, the micropore with pore diameter below 2 nm is the dominant factor in coal adsorption; PSD curves of micropores are of bimodal distribution, and different coal samples have similar PSD curves, the ultramicropore has a fastest increasing amount in the micropores; PV and SSA of mesopore decrease with increase of coal rank, and its PSD show unimodal distribution. With the increase of metamorphism, BET and SSA of coal decrease firstly and then increase with “U” pattern; The formation of micropores in coal is mainly controlled by the microcrystalline parameters and the stacking structure of the aromatic layer, while the formation of mesopores is mainly controlled by change of coal side chains and the space of basic structure unite.
  • [1]
    MASTALERZ M,DROBNIAK A,STRĄPOĆ D,et al. Variations in pore characteristics in high volatile bituminous coals:Implications for coalbed gas content[J]. International Journal of Coal Geology,2008,76:205-216.
    [2]
    钟玲文,张慧,员争荣,等. 煤的比表面积孔体积及其对煤吸附能力的影响[J]. 煤田地质与勘探,2002,30(3):26-28.

    ZHONG Lingwen,ZHANG Hui,YUN Zhengrong,et al. Influence of specific pore area and pore volume of coal on adsorption capacity[J]. Coal Geology & Exploration,2002,30(3):26-28.
    [3]
    GREGG S J. Sixty years in the physical adsorption of gases[J]. Colloids & Surfaces,1986,21(86):109-124.
    [4]
    降文萍,宋孝忠,钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报,2011,36(4):609-614.

    JIANG Wenping,SONG Xiaozhong,ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low temperature nitrogen adsorption method[J]. Journal of China Coal Society,2011,36(4):609-614.
    [5]
    陈向军,刘军,王林,等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报,2013,38(2):294-300.

    CHEN Xiangjun,LIU Jun,WANG Lin,et al. Influence of pore size distribution of different metamorphic grade of coal on adsorption constant[J]. Journal of China Coal Society,2013,38(2):294-300.
    [6]
    汪雷,汤达祯,许浩,等. 基于液氮吸附实验探讨煤变质作用对煤微孔的影响[J]. 煤炭科学技术,2014,42(增刊1):256-260.

    WANG Lei,TANG Dazhen,XU Hao,et al. Influence of metamorphism on micropores in coal seams based on nitrogen adsorption experiment[J]. Coal Science and Technology,2014,42(S1):256-260.
    [7]
    姚素平,焦堃,张科,等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报,2011,56(22):1820-1827.

    YAO Suping,JIAO Kun,ZHANG Ke,et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin,2011,56(22):1820-1827.
    [8]
    PAN J,NIU Q,WANG K,et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous & Mesoporous Materials,2016,224:245-252.
    [9]
    林海飞,程博,李树刚,等. 煤的吸附孔结构对瓦斯放散特性影响的实验研究[J]. 采矿与安全工程学报,2016,33(3):557-563.

    LIN Haifei,CHENG Bo,LI Shugang,et al. Experimental study on the effect of adsorption pore structure on gas emission characteristics[J]. Journal of Mining and Safety Engineering,2016,33(3):557-563.
    [10]
    张晓辉,要惠芳,李伟,等. 韩城矿区构造煤纳米级孔隙结构的分形特征[J]. 煤田地质与勘探,2014,42(5):4-8.

    ZHANG Xiaohui,YAO Huifang,LI Wei,et al. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. Coal Geology & Exploration,2014,42(5):4-8.
    [11]
    张玉贵,焦银秋,雷东记,等. 煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报(自然科学版),2016,35(2):141-148.

    ZHANG Yugui,JIAO Yinqiu,LEI Dongji,et al. Study on adsorption characteristics and fractal properties of nano-scale pores at low temperature coal[J]. Journal of Henan Polytechnic University(Natural Science),2016,35(2):141-148.
    [12]
    涂湘巍,黄胜,曹琴,等. 煤焦孔隙结构的表征及分析方法的构建[J]. 华东理工大学学报(自然科学版),2015,41(5):611-616.

    TU Xiangwei,HUANG Sheng,CAO Qin,et al. Method for characterization and analysis of pores in coke[J]. Journal of East China University of Science and Technology(Natural Science Edition),2015,41(5):611-616.
    [13]
    RAVIKOVITCH P I,HALLER G L,NEIMARK A V. Density functional theory model for calculating pore size distributions:Pore structure of nanoporous catalysts[J]. Advances in Colloid & Interface Science,1998,76/77:203-226.
    [14]
    CHALMERS G R L,BUSTIN R M. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology,2007,69(4):288-304.
    [15]
    姚艳斌,刘大锰,汤达祯,等. 华北地区煤层气储集与产出性能[J]. 石油勘探与开发,2007,34(6):664-668.

    YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Preservation and deliverability characteristics of coalbed methane,North China[J]. Petroleum Exploration and Development,2007,34(6):664-668.
    [16]
    琚宜文,姜波,王桂樑,等. 构造煤结构及储层物性[M]. 徐州:中国矿业大学出版社,2005:84-91.
    [17]
    MARSH H. Adsorption methods to study microporosity in coals and carbons—a critique[J]. Carbon,1987,25(1):49-58.
    [18]
    KANEKO K. Specific intermolecular structures of gases confined in carbon nanospace[J]. Carbon,2000,38(2):287-303.
    [19]
    姚伯元,李德平,吴亚东. 煤镜质组反射率指标的统计属性与正确应用[J]. 燃料与化工,2013,44(2):8-12.

    YAO Boyuan,LI Deping,WU Yadong. The statistical attribute and application of coal vitrinite reflectance index[J]. Fuel & Chemical Processes,2013,44(2):8-12.
    [20]
    张庆玲,张群,张泓,等. 我国不同时代不同煤级煤的吸附特征[J]. 煤田地质与勘探,2004,32(增刊1):68-72.

    ZHANG Qingling,ZHANG Qun,ZHANG Hong,et al. Adsorption characteristics of different rank coals in different areas,China[J]. Coal Geology & Exploration,2004,32(S1):68-72.
    [21]
    杨全红,郑经堂. 微孔炭的纳米孔结构和表面微结构[J]. 材料研究学报,2000,14(2):113-122.

    YANG Quanhong,ZHENG Jingtang. Nano-space and surface micro-structures of microporous carbon[J]. Chinese Journal of Materials Research,2000,14(2):113-122.
    [22]
    FRYER J R. The micropore structure of disordered carbons determined by high resolution electron microscopy[J]. Carbon,1981,19(6):431-439.
    [23]
    侯锦秀. 煤结构与煤的瓦斯吸附放散特性[D]. 焦作:河南理工大学,2009.
    [24]
    秦勇,姜波,王超,等. 中国高煤级煤的电子顺磁共振特征——兼论煤中大分子基本结构单元的“拼叠作用”及其机理[J]. 中国矿业大学学报,1997,26(2):10-14.

    QIN Yong,JIANG Bo,WANG Chao,et al. Electron paramagnetic resonance studies of high-rank coals in China:A reference to makingup and its mechanism of macromolecular basic structural units in coals[J]. Journal of China University of Mining & Technology,1997,26(2):10-14.
  • Cited by

    Periodical cited type(15)

    1. 朱文涛,李小刚,任勇,师斌斌,戴瑞瑞,洪星,杨潇,陈国辉. 基于CT扫描的煤岩孔隙结构全孔径表征. 特种油气藏. 2024(04): 71-80 .
    2. 李树刚,周雨璇,胡彪,秦雪燕,孔祥国,白杨,张静非. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响. 煤田地质与勘探. 2023(02): 127-136 . 本站查看
    3. 秦大川. 神华煤焦的孔隙表征与氧化失重关联性研究. 山东电力技术. 2023(04): 77-82 .
    4. 卢杰林,傅雪海,康俊强. 准南中低阶煤孔径结构全孔径定量综合表征. 中国科技论文. 2022(01): 62-71 .
    5. 汪昱辉,姚素平. 煤显微组分对煤石墨化作用的影响. 地球科学进展. 2022(06): 600-611 .
    6. 李晨晨. 二连盆地低阶煤储层孔隙特征研究——以吉尔嘎朗图凹陷和霍林河凹陷为例. 非常规油气. 2022(04): 37-45 .
    7. 孟筠青,张硕,曹子豪,王琛. 屯留矿煤分子孔隙重构及其表征与分析. 煤炭学报. 2022(S1): 160-170 .
    8. 刘世奇,王鹤,王冉,高德燚,Ashutosh Tripathy. 煤层孔隙与裂隙特征研究进展. 沉积学报. 2021(01): 212-230 .
    9. 唐跃刚,王绍清,郭鑫,李瑞青,林雨涵. 煤有机地球化学研究进展与展望. 矿物岩石地球化学通报. 2021(03): 574-596+777 .
    10. 贺小标,李鑫,魏永恒,田继军,琚宜文,杨曙光,王文峰,吴斌,王猛. 塔里木盆地北缘库拜煤田陡倾斜煤储层纳米孔隙特征及其地质控制. 地质科学. 2021(03): 740-757 .
    11. 符宏斌,苑坤,卢树藩,陈相霖,林拓,杜胜江,何犇,罗香建. 黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响. 天然气地球科学. 2020(12): 1814-1825 .
    12. 李阳,张玉贵,张浪,侯金玲. 基于压汞、低温N_2吸附和CO_2吸附的构造煤孔隙结构表征. 煤炭学报. 2019(04): 1188-1196 .
    13. 黄婷,刘正. 榆社-武乡区块煤储层孔隙结构特征及其影响因素分析. 煤炭科学技术. 2019(07): 227-233 .
    14. 李焕同,陈飞,邹晓艳,王楠,左晓峰,张卫国,韩雪,陈茜. 基于低温液氮吸附法的陕南中低煤级煤孔隙结构特征. 中国科技论文. 2019(07): 808-814 .
    15. 闫江伟,薄增钦,杨亚磊. 纳米级孔隙对构造煤吸附瓦斯能力的影响. 中国安全科学学报. 2018(10): 131-136 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (97) PDF downloads (15) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return