HOU Jinxiu, WANG Baojun, ZHANG Yugui, ZHANG Jinchun. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 75-81. DOI: 10.3969/j.issn.1001-1986.2017.05.014
Citation: HOU Jinxiu, WANG Baojun, ZHANG Yugui, ZHANG Jinchun. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 75-81. DOI: 10.3969/j.issn.1001-1986.2017.05.014

Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation

Funds: 

National Natural Science Foundation of China(41372157)

More Information
  • Received Date: August 12, 2017
  • Published Date: October 24, 2017
  • In order to investigate the evolution of the structure characteristics of micropore and mesopore of different rank coal and the cause of their formation, 7 different metamorphic coal samples collected from North China Permian coal basin were tested using low-pressure nitrogen and carbon dioxide adsorption techniques respectively. The change rule of pore size distribution(PSD), pore volume(PV)and specific surface area(SSA)of micropores(pore diameter less than 2 nm) and mesopores(pore diameter lies in 2~50 nm) with different metamorphic degrees of coal were analyzed using density function theory(DFT), Dubinin-Astakhov(DA)method, Dubinin-Radushkevich (DR) method, BET and BJH formula. Then the cause of the formation of micropores and mesopores was discussed. The results show that: PV and SSA of micropores are positively correlated with its vitrinite reflectance, the micropore with pore diameter below 2 nm is the dominant factor in coal adsorption; PSD curves of micropores are of bimodal distribution, and different coal samples have similar PSD curves, the ultramicropore has a fastest increasing amount in the micropores; PV and SSA of mesopore decrease with increase of coal rank, and its PSD show unimodal distribution. With the increase of metamorphism, BET and SSA of coal decrease firstly and then increase with “U” pattern; The formation of micropores in coal is mainly controlled by the microcrystalline parameters and the stacking structure of the aromatic layer, while the formation of mesopores is mainly controlled by change of coal side chains and the space of basic structure unite.
  • [1]
    MASTALERZ M,DROBNIAK A,STRĄPOĆ D,et al. Variations in pore characteristics in high volatile bituminous coals:Implications for coalbed gas content[J]. International Journal of Coal Geology,2008,76:205-216.
    [2]
    钟玲文,张慧,员争荣,等. 煤的比表面积孔体积及其对煤吸附能力的影响[J]. 煤田地质与勘探,2002,30(3):26-28.

    ZHONG Lingwen,ZHANG Hui,YUN Zhengrong,et al. Influence of specific pore area and pore volume of coal on adsorption capacity[J]. Coal Geology & Exploration,2002,30(3):26-28.
    [3]
    GREGG S J. Sixty years in the physical adsorption of gases[J]. Colloids & Surfaces,1986,21(86):109-124.
    [4]
    降文萍,宋孝忠,钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报,2011,36(4):609-614.

    JIANG Wenping,SONG Xiaozhong,ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low temperature nitrogen adsorption method[J]. Journal of China Coal Society,2011,36(4):609-614.
    [5]
    陈向军,刘军,王林,等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报,2013,38(2):294-300.

    CHEN Xiangjun,LIU Jun,WANG Lin,et al. Influence of pore size distribution of different metamorphic grade of coal on adsorption constant[J]. Journal of China Coal Society,2013,38(2):294-300.
    [6]
    汪雷,汤达祯,许浩,等. 基于液氮吸附实验探讨煤变质作用对煤微孔的影响[J]. 煤炭科学技术,2014,42(增刊1):256-260.

    WANG Lei,TANG Dazhen,XU Hao,et al. Influence of metamorphism on micropores in coal seams based on nitrogen adsorption experiment[J]. Coal Science and Technology,2014,42(S1):256-260.
    [7]
    姚素平,焦堃,张科,等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报,2011,56(22):1820-1827.

    YAO Suping,JIAO Kun,ZHANG Ke,et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin,2011,56(22):1820-1827.
    [8]
    PAN J,NIU Q,WANG K,et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous & Mesoporous Materials,2016,224:245-252.
    [9]
    林海飞,程博,李树刚,等. 煤的吸附孔结构对瓦斯放散特性影响的实验研究[J]. 采矿与安全工程学报,2016,33(3):557-563.

    LIN Haifei,CHENG Bo,LI Shugang,et al. Experimental study on the effect of adsorption pore structure on gas emission characteristics[J]. Journal of Mining and Safety Engineering,2016,33(3):557-563.
    [10]
    张晓辉,要惠芳,李伟,等. 韩城矿区构造煤纳米级孔隙结构的分形特征[J]. 煤田地质与勘探,2014,42(5):4-8.

    ZHANG Xiaohui,YAO Huifang,LI Wei,et al. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. Coal Geology & Exploration,2014,42(5):4-8.
    [11]
    张玉贵,焦银秋,雷东记,等. 煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报(自然科学版),2016,35(2):141-148.

    ZHANG Yugui,JIAO Yinqiu,LEI Dongji,et al. Study on adsorption characteristics and fractal properties of nano-scale pores at low temperature coal[J]. Journal of Henan Polytechnic University(Natural Science),2016,35(2):141-148.
    [12]
    涂湘巍,黄胜,曹琴,等. 煤焦孔隙结构的表征及分析方法的构建[J]. 华东理工大学学报(自然科学版),2015,41(5):611-616.

    TU Xiangwei,HUANG Sheng,CAO Qin,et al. Method for characterization and analysis of pores in coke[J]. Journal of East China University of Science and Technology(Natural Science Edition),2015,41(5):611-616.
    [13]
    RAVIKOVITCH P I,HALLER G L,NEIMARK A V. Density functional theory model for calculating pore size distributions:Pore structure of nanoporous catalysts[J]. Advances in Colloid & Interface Science,1998,76/77:203-226.
    [14]
    CHALMERS G R L,BUSTIN R M. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology,2007,69(4):288-304.
    [15]
    姚艳斌,刘大锰,汤达祯,等. 华北地区煤层气储集与产出性能[J]. 石油勘探与开发,2007,34(6):664-668.

    YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Preservation and deliverability characteristics of coalbed methane,North China[J]. Petroleum Exploration and Development,2007,34(6):664-668.
    [16]
    琚宜文,姜波,王桂樑,等. 构造煤结构及储层物性[M]. 徐州:中国矿业大学出版社,2005:84-91.
    [17]
    MARSH H. Adsorption methods to study microporosity in coals and carbons—a critique[J]. Carbon,1987,25(1):49-58.
    [18]
    KANEKO K. Specific intermolecular structures of gases confined in carbon nanospace[J]. Carbon,2000,38(2):287-303.
    [19]
    姚伯元,李德平,吴亚东. 煤镜质组反射率指标的统计属性与正确应用[J]. 燃料与化工,2013,44(2):8-12.

    YAO Boyuan,LI Deping,WU Yadong. The statistical attribute and application of coal vitrinite reflectance index[J]. Fuel & Chemical Processes,2013,44(2):8-12.
    [20]
    张庆玲,张群,张泓,等. 我国不同时代不同煤级煤的吸附特征[J]. 煤田地质与勘探,2004,32(增刊1):68-72.

    ZHANG Qingling,ZHANG Qun,ZHANG Hong,et al. Adsorption characteristics of different rank coals in different areas,China[J]. Coal Geology & Exploration,2004,32(S1):68-72.
    [21]
    杨全红,郑经堂. 微孔炭的纳米孔结构和表面微结构[J]. 材料研究学报,2000,14(2):113-122.

    YANG Quanhong,ZHENG Jingtang. Nano-space and surface micro-structures of microporous carbon[J]. Chinese Journal of Materials Research,2000,14(2):113-122.
    [22]
    FRYER J R. The micropore structure of disordered carbons determined by high resolution electron microscopy[J]. Carbon,1981,19(6):431-439.
    [23]
    侯锦秀. 煤结构与煤的瓦斯吸附放散特性[D]. 焦作:河南理工大学,2009.
    [24]
    秦勇,姜波,王超,等. 中国高煤级煤的电子顺磁共振特征——兼论煤中大分子基本结构单元的“拼叠作用”及其机理[J]. 中国矿业大学学报,1997,26(2):10-14.

    QIN Yong,JIANG Bo,WANG Chao,et al. Electron paramagnetic resonance studies of high-rank coals in China:A reference to makingup and its mechanism of macromolecular basic structural units in coals[J]. Journal of China University of Mining & Technology,1997,26(2):10-14.
  • Related Articles

    [1]WANG Gang, JIANG Chenghao, CHEN Xuechang. Numerical simulation of pore structure stress characteristics of coal and rock mass[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 57-64,80. DOI: 10.3969/j.issn.1001-1986.2021.01.006
    [2]XU Xuefeng. Numerical simulation of formation mechanism and distribution regularities of structural coal in thrust faults[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(2): 6-8. DOI: 10.3969/j.issn.1001-1986.2012.02.002
    [3]QIAN Jin, CUI Ruofei, CHEN Tongjun. Anisotropic numerical simulation of coal-bearing strata with finite-difference[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 63-67. DOI: 10.3969/j.issn.1001-1986.2010.02.016
    [4]NI Hong-mei, YANG Sheng-qi. Numerical simulation on size effect of rock material under uniaxial compression[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(5): 47-49.
    [5]ZHANG Dong-li, WANG Xin-hai. Numerical simulation of Pinnate horizontal multilateral well for coalbed gas recovery[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 47-51.
    [6]YANG Wei-feng, SUI Wang-hua. Numerical simulation of overlying strata and ground movement value induced by strip mining below thin bedrocks[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(3): 18-21.
    [7]Li Yulin, Yang Xilu, Chen Zhida, Yang Chenyong. LARGE DEFORMATION NUMERICAL MODELING OF HOMOGENOUS MUTI-LAYERS FOLDS[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(1): 4-6.
    [8]WEI Zhong-tao, LIU Huan-jie, MENG Jian. NUMERICAL SIMULATION ON COALBED METHANE DIFFUSION IN GEOHISTORY[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 19-24.
    [9]Guo Aihuang. NUMERICAL MODELING OF HORIZONTAL BOREHOLE IN COAL MINE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(1): 62-65.
    [10]Luo Zujiang, Yang Xilu. COALBED METHANE RESERVOIR NUMERICAL SIMULATION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(2): 28-30.
  • Cited by

    Periodical cited type(5)

    1. 王启宝,敖立新,张凯,杨康,唐玉伟,谭栩荧. 煤矸石自燃的关键影响因素及治理方法研究现状. 洁净煤技术. 2024(01): 228-238 .
    2. 黄斌,袁进,袁可,李秋宇,任孝正,王昊昱. 水岩作用下煤矸石中溶解性有机物的释放特征. 环境科学与技术. 2024(S2): 75-80 .
    3. 李玉嵩,卢宇灿,曹琼,赵丽,朱开鹏,张庆,于洪飞,张垒. 氨氮在煤矿采空区充填矸石中的运移机制. 煤田地质与勘探. 2022(06): 147-154 . 本站查看
    4. 董猛,李江山,陈新,金佳旭,鲁龙钊. 煤系固废基绿色充填材料制备及其性能研究. 煤田地质与勘探. 2022(12): 75-84 . 本站查看
    5. 段磊,王晓轩,孙亚乔,孙乐飞,吕佳佳. 煤矸石中氟的赋存特性及生态风险评价. 煤炭转化. 2021(02): 87-96 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (90) PDF downloads (15) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return