LIU Baobao, GUO Chun, YANG Haitao. Research on the integrated electric exploration system for coal mines and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 247-252. DOI: 10.3969/j.issn.1001-1986.2021.05.027
Citation: LIU Baobao, GUO Chun, YANG Haitao. Research on the integrated electric exploration system for coal mines and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 247-252. DOI: 10.3969/j.issn.1001-1986.2021.05.027

Research on the integrated electric exploration system for coal mines and its application

More Information
  • Received Date: January 29, 2021
  • Revised Date: April 24, 2021
  • Available Online: November 05, 2021
  • Published Date: October 24, 2021
  • In order to overcome the shortcomings of the existing electrical prospecting technology in coal mines, such as multiple construction of electrical sounding, electrical profile and electrical penetration and a scarcity of data collected, an integrated electrical prospecting system is successfully designed, absorbing the idea of parallel electrical data acquisition, and applying the "rectangular wave" electrode layout mode combined with the "multi device data extraction" technology. The experimental results show that the system can complete the original data acquisition of electrical sounding, electrical profile, electrical perspective and other electrical construction methods with one-time wiring and one-round power supply, and extract the measurement data of various electrical methods and device types. After a comprehensive process, the 3D exploration results of various geoelectric fields are obtained. At the same time, results under the same construction conditions are compared with each other to improve the precision and reliability of the analysis of geophysical exploration results. The existing electrical methods such as traditional direct current method, high-density method, parallel method and electric perspective method should be integrated to complement each other in an innovative manner, so as to realize efficient, fine and three-dimensional detection of water bearing capacity of coal and rock strata in the working face.
  • [1]
    刘盛东, 刘静, 岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报, 2014, 39(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201401004.htm

    LIU Shengdong, LIU Jing, YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society, 2014, 39(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201401004.htm
    [2]
    虎维岳, 田干. 我国煤矿水害类型及其防治对策[J]. 煤炭科学技术, 2010, 38(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201001031.htm

    HU Weiyue, TIAN Gan. Mine water disaster type and prevention and control countermeasures in China[J]. Coal Science and Technology, 2010, 38(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201001031.htm
    [3]
    薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1): 319-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201701045.htm

    XUE Guoqiang, YU Jingcun. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1): 319-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201701045.htm
    [4]
    张泓, 夏宇靖, 张群, 等. 深层煤矿床开采地质条件及综合探测: 现状与问题[J]. 煤田地质与勘探, 2009, 37(1): 1-11. DOI: 10.3969/j.issn.1001-1986.2009.01.001

    ZHANG Hong, XIA Yujing, ZHANG Qun, et al. Coal-mining geological conditions and explorations of deep coal deposits: Status and problems[J]. Coal Geology & Exploration, 2009, 37(1): 1-11. DOI: 10.3969/j.issn.1001-1986.2009.01.001
    [5]
    董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭, 2020, 46(9): 15-23. DOI: 10.3969/j.issn.1006-530X.2020.09.003

    DONG Shuning. New technology and new equipment of geological guarantee of safe and efficient production in coal mines[J]. China Coal, 2020, 46(9): 15-23. DOI: 10.3969/j.issn.1006-530X.2020.09.003
    [6]
    周金, 程久龙, 温来福. 矿井瞬变电磁金属干扰响应特征与校正方法[J]. 中国矿业, 2017, 26(8): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201708028.htm

    ZHOU Jin, CHENG Jiulong, WEN Laifu. Response characteristics of metallic facilities and correction method on mine transient electromagnetic surveying[J]. China Mining Magazine, 2017, 26(8): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201708028.htm
    [7]
    王少飞. 矿井物探技术应用现状与发展展望分析[J]. 江西化工, 2020(2): 307-308. DOI: 10.3969/j.issn.1008-3103.2020.02.118

    WANG Shaofei. Analysis on application status and development prospect of mine geophysical exploration technology[J]. Jiangxi Chemical Industry, 2020(2): 307-308. DOI: 10.3969/j.issn.1008-3103.2020.02.118
    [8]
    刘盛东, 刘静, 戚俊, 等. 矿井并行电法技术体系与新进展[J]. 煤炭学报, 2019, 44(8): 2336-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908008.htm

    LIU Shengdong, LIU Jing, QI Jun, et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society, 2019, 44(8): 2336-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908008.htm
    [9]
    刘盛东, 吴荣新, 张平松, 等. 三维并行电法勘探技术与矿井水害探查[J]. 煤炭学报, 2009, 34(7): 927-932. DOI: 10.3321/j.issn:0253-9993.2009.07.013

    LIU Shengdong, WU Rongxin, ZHANG Pingsong, et al. Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society, 2009, 34(7): 927-932. DOI: 10.3321/j.issn:0253-9993.2009.07.013
    [10]
    胡水根, 刘盛东. 电法勘探中并行数据采集与传统数据采集效率的比较研究[J]. 地球物理学进展, 2010, 25(2): 612-617. DOI: 10.3969/j.issn.1004-2903.2010.02.034

    HU Shuigen, LIU Shengdong. A comparative study on efficiency about traditional electrical and collateral data collection in electrical prospecting[J]. Progress in Geophysics, 2010, 25(2): 612-617. DOI: 10.3969/j.issn.1004-2903.2010.02.034
    [11]
    岳建华, 刘树才. 矿井直流电法勘探[M]. 北京: 中国矿业大学出版社, 2000.

    YUE Jianhua, LIU Shucai. Mine direct current exploration[M]. Beijing: China University of Mining and Technology Press, 2000.
    [12]
    戴前伟, 陈德鹏, 陈勇雄, 等. 电法勘探中异常响应特征的增强算法及其实现[J]. 煤田地质与勘探, 2013, 41(3): 75-78. DOI: 10.3969/j.issn.1001-1986.2013.03.018

    DAI Qianwei, CHEN Depeng, CHEN Yongxiong, et al. The enhanced algorithms and its implementation for the abnormal response characteristics in electrical exploration[J]. Coal Geology & Exploration, 2013, 41(3): 75-78. DOI: 10.3969/j.issn.1001-1986.2013.03.018
    [13]
    杨振威, 严加永, 刘彦, 等. 高密度电阻率法研究进展[J]. 地质与勘探, 2012, 48(5): 969-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201205014.htm

    YANG Zhenwei, YAN Jiayong, LIU Yan, et al. Research progress of the high density resistivity method[J]. Geology and Exploration, 2012, 48(5): 969-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201205014.htm
    [14]
    郭鹏飞, 谢雄刚, 白雯, 等. 音频电透视法在防治矿井水患中的应用[J]. 工业安全与环保, 2018, 44(4): 34-36. DOI: 10.3969/j.issn.1001-425X.2018.04.009

    GUO Pengfei, XIE Xionggang, BAI Wen, et al. Application of audio frequency electric perspective method in detecting in detecting mine flooding zones[J]. Industrial Safety and Environmental Protection, 2018, 44(4): 34-36. DOI: 10.3969/j.issn.1001-425X.2018.04.009
    [15]
    郭纯, 李文军, 邢文平. 直流电法探测技术在煤矿防治水方面应用的研究[J]. 河南理工大学学报, 2005, 24(6): 439-442. DOI: 10.3969/j.issn.1673-9787.2005.06.006

    GUO Chun, LI Wenjun, XING Wenping. Research of the application of the D. C. detecting technology in mine water prevention and cure[J]. Journal of Henan Polytechnic University, 2005, 24(6): 439-442. DOI: 10.3969/j.issn.1673-9787.2005.06.006
    [16]
    夏毅民, 尹奇峰, 郑刘根, 等. 并行电法矿井水害探测技术研究与应用[J]. 物探化探计算技术, 2019, 41(6): 813-818. DOI: 10.3969/j.issn.1001-1749.2019.06.16

    XIA Yimin, YIN Qifeng, ZHENG Liugen, et al. Research and application of mine electrical disaster detection technology based on parallel electric method[J]. Calculation Technology Geophysical and Geochemical Exploration, 2019, 41(6): 813-818. DOI: 10.3969/j.issn.1001-1749.2019.06.16
    [17]
    张军, 王勇, 秦鸿刚, 等. 矿井音频电透视在矿井工作面探测中的应用[J]. 工程地球物理学报, 2013, 10(4): 551-554. DOI: 10.3969/j.issn.1672-7940.2013.04.021

    ZHANG Jun, WANG Yong, QIN Honggang, et al. The application of audio frequency electric perspective to detection of coal mine work face[J]. Chinese Journal of Engineering Geophysics, 2013, 10(4): 551-554. DOI: 10.3969/j.issn.1672-7940.2013.04.021
    [18]
    严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4): 576-584. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201204014.htm

    YAN Jiayong, MENG Guixiang, LYU Qingtian, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576-584. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201204014.htm
    [19]
    傅良魁. 电法勘探教程[M]. 北京: 地质出版社, 1983.

    FU Liangkui. Electrical exploration course[M]. Beijing: Geological Publishing House, 1983.
    [20]
    李志聃. 煤田电法勘探[M]. 徐州: 中国矿业大学出版社, 1990.

    LI Zhidan. Electrical prospecting in coalfield[M]. Xuzhou: China University of Mining and Technology Press, 1990.
  • Related Articles

    [1]LI Zhiwei, CHEN Deming, LIANG Xiangyang, WU Yonghui. Effect of hydrogeological conditions on the mining sequence in Menkeqing Mine[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 124-129. DOI: 10.3969/j.issn.1001-1986.2018.02.019
    [2]ZHANG Zhilong, GAO Yanfa, WU Qiang, Wei Simin. Classification and assessment of mine hydrogeological conditions of Yaoqiao coal mine in Datun[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(2): 67-71. DOI: 10.3969/j.issn.1001-1986.2013.02.016
    [3]MA Shu-zhi, JIA Hong-biao, TANG Hui-ming, HU Xin-li, LI Zhen-yu. Surveying hydrogeological conditions of landslide with nuclear magnetic resonance method[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(6): 33-36.
    [4]NIU Jian-li, DUAN Qi. Study on hydrogeological conditions in mining areas using hydro-geochemical methods[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(2): 39-42.
    [5]ZHANG Pei-he. Analyses on hydrogeological conditions for the development of coalbed methane in Hegang coal field[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(2): 42-43.
    [6]He Borong. THE COMPREHENSIVE ANALYSIS OF HYDROGEOLOGICAL CONDITIONS IN YANGZHUANG AND ZHUZHUANG COAL MINES[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(6): 40-42.
    [7]Jin Dewu. THE COMPREHENSIVE ANALYSIS METHOD OF HYDROGEOLOGY IN CONTROLLING COAL MINE WATER HAZARD[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 52-54.
    [8]Zhu Dizhi, Liu Yuanqing, Wang Chengxu. HYDROGEOLOGICAL CONDITION EVALUATION OF ERLANGSHAN TUNNEL SPOT[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(S1): 54-58.
    [9]Xing Xiangrong, Bu Changsen. MINE HYDROGEOLOGIC CONDITIONS PROSPECTED BY COMPREHENSIVE GEOPHYSICAL EXPLORATION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(5): 4-7.
    [10]Wang Yonghong, Shen Wen. THE HYDROGEOLOGICAL CONDITION OF WEISHAN LAKE AND ITS EFFECT ON MINING UNDER WATER[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(2): 40-44.
  • Cited by

    Periodical cited type(11)

    1. 侯恩科,吴家镁,杨帆,张池. 基于鲸鱼优化算法-支持向量机判别模型的风化基岩富水性评价:以神府煤田张家峁煤矿为例. 科学技术与工程. 2025(01): 119-127 .
    2. 王海. 隐伏火烧区烧变岩含水层水害治理技术研究. 煤田地质与勘探. 2024(05): 88-97 . 本站查看
    3. 詹林,潘剑伟,高健,张成丽,杨晨,钱伦,槐玉鹿. 基于局部加密的非结构化网格SNMR方法二维Occam反演研究. 地球物理学进展. 2024(03): 1089-1101 .
    4. 薛建坤. 新疆阿艾矿区烧变岩水害特征及防治技术. 煤炭工程. 2024(11): 90-95 .
    5. 侯恩科,杨斯亮,苗彦平,车晓阳,杨磊,路波,谢晓深,王慧德,党冰. 基于Bayes判别分析模型的风化基岩富水性预测. 煤矿安全. 2023(01): 180-187 .
    6. 杨月堂. 煤矿顶部隔水性能多尺度评价. 能源与环保. 2023(02): 268-274 .
    7. 郭飞,侯克鹏,钟晓勇,陈俊彬,汪云川. 核磁共振技术在露天矿山地下水勘查中的应用. 中国矿业. 2023(05): 146-152+159 .
    8. 黄忠正,赵宝峰. 复合砂岩含水层下掘进巷道顶板富水异常区探查技术. 煤炭技术. 2023(07): 108-111 .
    9. 郭源. 地空电磁—核磁共振联测方法在地层富水性探测中的应用与研究. 山西煤炭. 2023(02): 89-95 .
    10. 吕振猛,孟凡贞,吕文茂,李梁宁. 改进的富水性预测评价方法. 煤炭技术. 2023(09): 152-155 .
    11. 赵宝峰,黄忠正,宗伟琴. 宁东煤田鸳鸯湖矿区煤层顶板水害防控技术与应用宁东煤田鸳鸯湖矿区煤层顶板水害防控技术与应用. 中国煤炭. 2022(03): 23-29 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (152) PDF downloads (30) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return