LI Kuo, LIU Qinfu, SONG Botao, ZHANG Shuai, WU Yingke. Investigation on structural evolution and thermal reaction of coal-based graphite from Xinhua County, Hunan Province[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 42-47,54. DOI: 10.3969/j.issn.1001-1986.2020.01.006
Citation: LI Kuo, LIU Qinfu, SONG Botao, ZHANG Shuai, WU Yingke. Investigation on structural evolution and thermal reaction of coal-based graphite from Xinhua County, Hunan Province[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 42-47,54. DOI: 10.3969/j.issn.1001-1986.2020.01.006

Investigation on structural evolution and thermal reaction of coal-based graphite from Xinhua County, Hunan Province

Funds: 

National Natural Science Foundation of China (41672150,41802189)

More Information
  • Received Date: December 12, 2019
  • Revised Date: December 17, 2019
  • Published Date: February 24, 2020
  • To investigate the structural evolution and thermal reaction of coal-based graphite with different graphitization, the anthracite and coal-based graphite from Xinhua County, Hunan were analyzed by X-ray diffraction (XRD), high resolution transformation electron microscope(HRTEM), and temperature programmed oxidation (TPO). The results show that carbon structure transformed from the amorphous anthracite to three dimensionally ordered graphite as graphitization degree increases. The coal-based graphite samples with different graphitization degree are composed of multi carbon phases, suggesting a heterogeneous nature of coal-based graphite, and ordered carbon phases were common in higher rank samples, however, defects can still be detected in most metamorphosed coal-based graphite. The multi carbon phases co-exist and inhomogeneous distribution have important impact on the thermal reaction of coal-based graphite.
  • [1]
    高天明,陈其慎,于汶加,等. 中国天然石墨未来需求与发展展望[J]. 资源科学,2015,37(5):1059-1067.

    GAO Tianming,CHEN Qishen,YU Wenjia,et al. Projection of China's graphite demand and development prospects[J]. Resources Science,2015,37(5):1059-1067.
    [2]
    莫如爵,刘绍斌,黄翠蓉,等. 中国石墨矿床地质[M]. 北京:中国建筑工业出版社,1989.

    MO Rujue,LIU Shaobin,HUANG Cuirong,et al. Geologic study of Chinese graphite deposits[M]. Beijing:China Architecture & Building Press,1989.
    [3]
    董业绩,曹代勇,王路,等. 地质勘查阶段煤系石墨与无烟煤的划分指标探究[J]. 煤田地质与勘探,2018,46(1):8-12.

    DONG Yeji,CAO Daiyong,WANG Lu,et al. Indicators for partitioning graphite and anthracite in coal measures during geological exploration phase[J]. Coal Geology & Exploration,2018,46(1):8-12.
    [4]
    潘伟尔,杨起,潘治贵. 湘赣中南部地区煤的岩浆热变质作用[J]. 现代地质,1993,7(3):326-336.

    PAN Wei'er,YANG Qi,PAN Zhigui. Magmatic thermametamorphism of coal in central-southern Hunan and Jiangxi Province[J]. Geoscience,1993,7(3):326-336.
    [5]
    曹代勇,张鹤,董业绩,等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘,2017,24(5):317-327.

    CAO Daiyong,ZHANG He,DONG Yeji,et al. Research status and key orientation of coal-based graphite mineral geology[J]. Earth Science Frontiers,2017,24(5):317-327.
    [6]
    陈家良,邵震杰,秦勇. 能源地质学[M]. 徐州:中国矿业大学出版社,2004.

    CHEN Jialiang,SHAO Zhenjie,QIN Yong. Energy geology[M]. Xuzhou:China University of Mining and Technology Press,2004.
    [7]
    罗陨飞,李文华. 中低变质程度煤显微组分大分子结构的XRD研究[J]. 煤炭学报,2004,29(3):338-341.

    LUO Yunfei,LI Wenhua. X-ray diffraction analysis on the different macerals of several low-to-medium metamorpic grade coals[J]. Journal of China Coal Society,2004,29(3):338-341.
    [8]
    杨起,吴冲龙,汤达祯,等. 中国煤变质作用[J]. 地球科学,1996,21(3):311-319.

    YANG Qi,WU Chonglong,TANG Dazhen,et al. Coal metamorphism in China[J]. Earth Science,1996,21(3):311-319.
    [9]
    张浩,侯丹丹,秦召,等. 煤系石墨氧化过程中结构变化研究[J]. 河北工程大学学报(自然科学版),2017,34(1):92-96.

    ZHANG Hao,HOU Dandan,QIN Zhao,et al. Study on structure change during the oxidation process of different graphitization graphite[J]. Journal of Hebei University of Engineering(Natural Science Edition),2017,34(1):92-96.
    [10]
    RASOVIC L R,Jr PHILIP W L,JENKINS R G. Importance of carbon active sites in the gasification of coal chars[J]. Fuel,1983,62(7):849-856.
    [11]
    NYATHI M S,CLIFFORD B C,SCHOBERT H H. Characterization of graphitic materials prepared from different rank Pennsylvania anthracites[J]. Fuel,2013,114(6):244-250.
    [12]
    LUQUE F J,HUIZENGA J M,CEESPO-FEO E,et al. Vein graphite deposits:Geological settings,origin,and economic significance[J]. Mineralium Deposita,2014,49(2):261-277.
    [13]
    LI Kuo,RIMMER S M,LIU Qinfu. Geochemical and petrographic analysis of graphitized coals from central Hunan,China[J]. International Journal of Coal Geology,2018,195:267-279.
    [14]
    崔先健,刘钦甫,李阔,等. 湖南鲁塘煤系隐晶质石墨矿物学特征[J]. 矿物学报,2018,38(2):142-151.

    CUI Xianjian,LIU Qinfu,LI Kuo,et al. Mineralogical characteristics of coal-based cryptocrystalline graphite in Lutang area,Hunan Province,China[J]. Acta Mineralogical Sinica,2018,38(2):142-151.
    [15]
    李阳,王路,曹代勇,等. 江西崇义矿煤成石墨的发现及其地质意义[J]. 煤田地质与勘探,2019,47(5):79-85.

    LI Yang,WANG Lu,CAO Daiyong,et al. The discovery and geological significance of coal-formed graphite in Chongyi coal mine in Jiangxi Province[J]. Coal Geology & Exploration,2019,47(5):79-85.
    [16]
    刘钦甫,袁亮,李阔,等. 不同变质程度煤系石墨结构特征[J]. 地球科学,2018,43(5):305-311.

    LIU Qinfu,YUAN Liang,LI Kuo,et al. Structure characteristics of different metamorphic grade coal-based graphites[J]. Earth Science,2018,43(5):305-311.
    [17]
    DOORN J,VUURMAN M A,TROMP P J J,et al. Correlation between Raman spectroscopic data and the temperature programmed oxidation reactivity of coals and carbons[J]. Fuel Processing Technology,1990,24:407-413.
    [18]
    MILLIGAN J B,THOMAS K M,CRELLING J C. Temperature- programmed combustion studies of coal and maceral group concentrates[J]. Fuel,1997,76(13):1249-1255.
  • Related Articles

    [1]WANG Enying, LIU Shanqing, GAO Rongbin, LIU Zhanjun. Transient electromagnetic exploration-based experiment on the relationship between the level of gas content and apparent resistivity in high rank coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 149-153,158. DOI: 10.3969/j.issn.1001-1986.2017.06.024
    [2]ZHU Xi'an, LI Feilong. A comparative study of the translation algorithm and kernel function algorithm for the large fixed loop[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(3): 120-123,127. DOI: 10.3969/j.issn.1001-1986.2016.03.023
    [3]FENG Bing, WANG Junlu, ZHOU Xiangwen, WANG Yu. Application of full-region apparent resistivity of CSAMT Ex in exploration[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 78-82. DOI: 10.3969/j.issn.1001-1986.2013.06.019
    [4]WU Junjie, ZHANG Jie, WANG Xingchun, DENG Xiaohong, YANG Yi. Calculation of fixed TEM response and apparent resistivity based on equivalent magnetic dipole[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(3): 68-71. DOI: 10.3969/j.issn.1001-1986.2013.03.016
    [5]SUN Qiang, FENG Yong, ZHU Shuyun, YANG Cai, XUE Lei. Analysis on the relation between resistivity and permeability of saturated rock during loading process[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(2): 86-90. DOI: 10.3969/j.issn.1001-1986.2012.02.021
    [6]WONG Ai-hua, LU Dong-hua, LIU Guo-xing. Definition of whole zone apparent resistivity for transient electromagnetic method of current dipole source[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 56-59.
    [7]YAN Liang-jun, XU Shi-zhe, HU Wen-bao, CHEN Qing-li, HU Jia-hua. A rapid resistivity imaging method for central loop transient electromagnetic sounding and its application[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(6): 58-61.
    [8]Chen Mingsheng, Tian Xiaobo. STUDY ON THE TRANSIENT ELECTROMAGNETIC (TEM) SOUNDING WITH ELECTRIC DIPOLE.IV.APPARENT RESISTIVITY IN TEM SOUNDING[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 52-55.
    [9]Sha Lei, Cai Bolin, Shi Xiaoman. THE APPARENT RESISTIVITY ANOMALY IN ELLIPSOIDAL MODEL UNDER CROSS-BOREHOLE CONDITION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(2): 45-49.
    [10]Lin Zhangyou, Wu Yuxia, Luo Dongshan, Lü Fulin. JOINT-INVERSION METHOD OF ONE-COMPONENT APPARENT RESISTIVITY-PHASE IN ERFQUENCY ELECTROMAGNETIC SOUNDING[J]. COAL GEOLOGY & EXPLORATION, 1993, 21(3): 46-52.
  • Cited by

    Periodical cited type(2)

    1. 王广君,段雪影,黄鲸珲,胡祥云. 基于蒙特卡洛方法的瞬变电磁接收机过渡过程研究. 工程地球物理学报. 2022(05): 585-594 .
    2. 曾庆宁,罗瀛,刘帅,龙超. 瞬变电磁全期视电阻率的弦截无限逼近算法. 石油地球物理勘探. 2019(06): 1371-1375+1177-1178 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (187) PDF downloads (25) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return