SU Chao, HOU Yanwei, WANG Cheng, LI Dan. CSAMT phase correction and its application in detection of water-accumulating area of goaf in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 180-186. DOI: 10.3969/j.issn.1001-1986.2019.06.027
Citation: SU Chao, HOU Yanwei, WANG Cheng, LI Dan. CSAMT phase correction and its application in detection of water-accumulating area of goaf in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 180-186. DOI: 10.3969/j.issn.1001-1986.2019.06.027

CSAMT phase correction and its application in detection of water-accumulating area of goaf in coal mine

Funds: 

National Key R&D Program of China(2017YFC0804105)

More Information
  • Received Date: May 12, 2019
  • Published Date: December 24, 2019
  • Magnetic field data of controlled source audio magnetotelluric method(CSAMT) is vulnerable to electromagnetic interference, and will lead to serious degradation of phase data quality. The affected phase data are corrected by referring to the high quality phase data of adjacent measuring points and combining the least squares fitting and interpolation method. Through forward simulation analysis, it is found that cubic polynomial interpolation is effective, not only can restore the variation characteristics of phase curve more accurately, but also involve the corrected phase data in the inversion calculation, so that the inversion results are more accurate and reliable. The method is applied to the detection of water-accumulating area of goaf in a coal mine in Shanxi Province. The detection results accurately reflect the scope of the known wa-ter-accumulating area of goaf.
  • [1]
    薛国强,潘冬明,于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展,2018,33(5):2187-2192.

    XUE Guoqiang,PAN Dongming,YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics,2018,33(5):2187-2192.
    [2]
    刘菁华,王祝文,朱士,等. 煤矿采空区及塌陷区的地球物理探查[J]. 煤炭学报,2005,30(6):715-719.

    LIU Jinghua,WANG Zhuwen,ZHU Shi,et al. The geo-physical exploration about exhausted area and sinking area in coal mine[J]. Journal of China Coal Society,2005,30(6):715-719.
    [3]
    程建远,孙洪星,赵庆彪,等. 老窑采空区的探测技术与实例研究[J]. 煤炭学报,2008,33(3):251-255.

    CHENG Jianyuan,SUN Hongxing,ZHAO Qingbiao,et al. The detection technology of excavated region in coal mine and case study[J]. Jouranl of China Coal Society,2008,33(3):251-255.
    [4]
    刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19-25.

    LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19-25.
    [5]
    李洪嘉. 综合物探技术在煤矿采空区探测中的应用研究[D]. 长春:吉林大学,2014.
    [6]
    程久龙,潘冬明,李伟,等. 强电磁干扰区灾害性采空区探地雷达精细探测研究[J]. 煤炭学报,2010,35(2):227-231.

    CHENG Jiulong,PAN Dongming,LI Wei,et al. Study on the detecting of hazard abandoned workings by ground penetrating radar on strong electromagnetic interference area[J]. Journal of China Coal Society,2010,35(2):227-231.
    [7]
    祁民,张宝林,梁光河,等. 高分辨率预测地下复杂采空区的空间分布特征:高密度电法在山西阳泉某复杂采空区中的初步应用研究[J]. 地球物理学进展,2006,21(1):256-262.

    QI Min,ZHANG Baolin,LIANG Guanghe,et al. High-resolution prediction of space distribution characteristics of complicated underground cavities:Preliminary application of high-density electrical technique in an area of Yangquan,Shanxi[J]. Progress in Geophysics,2006,21(1):256-262.
    [8]
    黄群. 应用高密度电测深法和瞬变电磁法探测煤矿采空区[J]. 物探与化探,2012,36(增刊1):107-110.

    HUANG Qun. The application of high density resistivity method and transient electromagnetic method to the detection of coal mine goaf[J]. Geophysical & Geochemical Exploration,2012,36(S1):107-110.
    [9]
    李彬,庹先国,汪楷洋,等. 高密度电法三电位电极系装置勘察适用性研究[J]. 煤田地质与勘探,2015,43(1):86-90.

    LI Bin,TUO Xianguo,WANG Kaiyang,et al. Applicability of tri-potential electrode arrays of high density resistivity[J]. Coal Geology & Exploration,2015,43(1):86-90.
    [10]
    贾永梅,姚成林,邓中俊,等. 可控源音频大地电磁法探测煤矿采空区[J]. 物探与化探,2012,36(增刊1):7-11.

    JIA Yongmei,YAO Chenglin,DENG Zhongjun,et al. The application of controllable source audio magnetic method to detecting goaf in coal mine[J]. Geophysical & Geochemical Exploration,2012,36(S1):7-11.
    [11]
    刘明,王东华,李波. CSAMT采集频率与相位参数在采空区勘查中的应用[J]. 物探与化探,2012,36(增刊1):48-50.

    LIU Ming,WANG Donghua,LI Bo. Application of sampling frequency and phase parameterof controlled-source audiomagnetotellurics[J]. Geophysical & Geochemical Exploration,2012,36(S1):48-50.
    [12]
    牟义. 浅埋采空区瞬变电磁法响应特征试验研究[J]. 煤炭科学技术,2018,46(10):203-208.

    MOU Yi. Experimental study on response characteristics of transient electromagnetic method in shallow gob[J]. Coal Science and Technology,2018,46(10):203-208.
    [13]
    张永超,程辉,张克聪,等. CSAMT探测大采深急倾斜煤层采空区研究[J]. 地球物理学进展,2016,31(2):877-881.

    ZHANG Yongchao,CHENG Hui,ZHANG Kecong,et al. Detecting goaf of large mining depth in steep coal seams by CSAMT[J]. Progress in Geophysics,2016,31(2):877-881.
    [14]
    张克聪,张永超,李宏杰,等. 高分辨率CSAMT探测浅埋煤层采空区应用研究[J]. 中国煤炭,2016,42(7):24-28.

    ZHANG Kecong,ZHANG Yongchao,LI Hongjie,et al. Research on application of CSAMT with high resolution for detecting goaf in shallow coal seam[J]. China Coal,2016,42(7):24-28.
    [15]
    程云涛. CSAMT静态效应的识别及校正[D]. 长沙:中南大学,2008.
    [16]
    黄兆辉,底青云,侯胜利. CSAMT的静态效应校正及应用[J]. 地球物理学进展,2006,21(4):1290-1295.

    HUANG Zhaohui,DI Qingyun,HOU Shengli. CSAMT static correction and its application[J]. Progress in Geophysics,2006,21(4):1290-1295.
    [17]
    于生宝,郑建波,高明亮,等. 基于小波变换模极大值法和阈值法的CSAMT静态校正[J]. 地球物理学报,2017,60(1):360-368.

    YU Shengbao,ZHENG Jianbo,GAO Mingliang,et al. CSAMT static correction method based on wavelet transform modulus maxima and thresholds[J]. Chinese Journal of Geophysics,2017,60(1):360-368.
    [18]
    胡瑞华,林君,孙彩堂,等. 均匀大地CSAMT静态效应模拟及其特征研究[J]. 物探与化探,2015,39(6):1150-1155.

    HU Ruihua,LIN Jun,SUN Caitang,et al. Simulation of CSAMT static effect and research on its characteristics in homogeneous earth[J]. Geophysical and Geochemical Exploration,2015,39(6):1150-1155.
    [19]
    苏超,郭恒,侯彦威,等. CSAMT静态校正及其在煤矿采空区探测的应用[J]. 煤田地质与勘探,2018,46(4):168-173.

    SU Chao,GUO Heng,HOU Yanwei,et al. CSAMT static correction and its application in coal mine goaf detection[J]. Coal Geology & Exploration,2018,46(4):168-173.
    [20]
    张博.基于非结构有限元的频率/时间域航空电磁系统仿真研究[D]. 长春:吉林大学,2017.
  • Related Articles

    [1]LIU Kang, NING Shuzheng, CAO Daiyong, WU Guoqiang, WANG Lu, LIN Zhongyue, WANG Anmin. A preliminary evaluation method for coal-based graphite[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(4): 1-10. DOI: 10.12363/issn.1001-1986.22.10.0809
    [2]LONG Weicheng, SUN Siqing, LI Guofu. Evaluation method of coalbed methane surface drainage effect in coal mines——Take a block of Sihe mine as an example[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(6): 55-58,63. DOI: 10.3969/j.issn.1001-1986.2016.06.010
    [3]LUO Bing, XIE Xiaoguo. Quantitative evaluation of reservoir heterogeneity of coal seam by using logging data[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 155-159. DOI: 10.3969/j.issn.1001-1986.2016.05.030
    [4]FANG Jiahu, LI Zhi, ZHANG Yang, WU Xiaojun, WANG Haojie, LYU Junwei. Comprehensive evaluation of geological structure complexity of 8th seam in Luling mine[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 22-26,30. DOI: 10.3969/j.issn.1001-1986.2016.01.004
    [5]CUI Lianxun, SHAO Xianjie, DONG Xinxiu, WU Ze, LI Shicai, WANG Haiyang, XU Hao. Evaluation index system and method of coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 26-30. DOI: 10.3969/j.issn.1001-1986.2014.03.006
    [6]SHU Jiansheng, JIA Jiancheng, WANG Yaozhong, GONG Wen. Quantitative evaluation of geological structure complexity: with Guobei coal mine as example[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(6): 22-26. DOI: 10.3969/j.issn.1001-1986.2010.06.005
    [7]LE Qi-lang, YANG Wei-min, CHEN Ping, CHENG Hai-yan. The research of quantitative evaluation of seam-gliding structure and its application in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 22-25. DOI: 10.3969/j.issn.1001-1986.2009.06.006
    [8]HU Shao-long, ZHU Wen-wei, CHEN Bo-nian, YU Xian-zhong. Quantitative and comprehensive evaluation of coal resource exploration types in Huainan-Huaibei area[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(6): 7-11.
    [9]ZHU Bao-long, XIA Yu-cheng. Quantitative evaluation of mining structure based on the artificial neural network[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 15-17.
    [10]LIU Xiaoyan, LU Shuangfang, YI Yingjie. QUANTITATIVE EVALUATION OF HYDROCARBON GENERATION AND EXPULTION IN COAL BEARING MEASURES IN HAILAER BASIN[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(6): 17-20.
  • Cited by

    Periodical cited type(9)

    1. 吴见,张松航,贾腾飞,晁巍巍,彭文春,李世龙. 深部煤层钻孔保压取心流程分析及含气量测定方法. 石油实验地质. 2025(01): 163-172 .
    2. 闫霞,徐凤银,熊先钺,王峰,李春虎,张纪远,徐博瑞,成前辉,胡雄,朱学光,梁为,袁朴,冯延青,魏振吉. 深部煤层气勘探开发关键实验技术及发展方向. 煤田地质与勘探. 2025(01): 128-141 . 本站查看
    3. 刘伟,韩冬阳,徐浩,周禹军,李天男. 煤层双重孔隙瓦斯输运机理及模型评估. 煤炭科学技术. 2025(02): 151-162 .
    4. 高明忠,宋杰,崔鹏飞,李永程,李聪,李佳南,刘贵康,游镇西,史晓军. 深部煤层原位保压保瓦斯取心技术装备及初步应用. 煤炭科学技术. 2024(04): 143-154 .
    5. 陈绍杰,周婷,黄跃辉,徐阿猛,王智正. “封-开-封”型密封取样装置及试验. 华北科技学院学报. 2024(03): 1-5 .
    6. Peng-Fei Cui,De-Lei Shang,Peng Chu,Ju Li,Da-Li Sun,Tian-Yu Wang,Ming-Zhong Gao,He-Ping Xie. Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance. Petroleum Science. 2024(05): 3517-3534 .
    7. 关建闯,安丰华,花春蕾. 复杂地层条件下煤层瓦斯压力免封孔测试方法应用研究. 能源与环保. 2024(12): 104-106+112 .
    8. 翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 .
    9. 陈学习. 井下煤层瓦斯压力与含量直接测定技术研究进展. 华北科技学院学报. 2023(05): 1-14 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return