SUN Jiwei, SHEN Lina, YANG Gansheng, YE Jichao. Study on local volume breakage of diamond-impregnated bit[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 232-238. DOI: 10.3969/j.issn.1001-1986.2019.05.033
Citation: SUN Jiwei, SHEN Lina, YANG Gansheng, YE Jichao. Study on local volume breakage of diamond-impregnated bit[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 232-238. DOI: 10.3969/j.issn.1001-1986.2019.05.033

Study on local volume breakage of diamond-impregnated bit

Funds: 

National Key R&D Program of China(2016YFE0202200)

More Information
  • Received Date: January 01, 2019
  • Published Date: October 24, 2019
  • To solve the problem of high energy consumption and slow drilling speed of impregnated diamond drill in hard rock, the method of volume crushing to improve drilling efficiency was put forward. In order to study the crushed volume of impregnated diamond bit in hard rock, firstly, an test of single diamond pressed into rock was designed. According to the experimental data, the first partial broken volume when single diamond was pressed into rock was the volume breakage type of impregnated diamond bit. Then the mathematical model of optimal drilling pressure and speed in first partial broken volume was deduced. By comparing the theoretical value with the actual value, the results of test of single diamond pressed into rock and the correctness of mathematical model were further verified. Finally, we put forward a method to improve drilling speed, the method is to add large-grained diamond to small-grained diamond bit, to quantitatively calculate the theoretical concentration of large-grained diamond, and the addition amount of small and large diamond grain was determined, the distribution and rock crushing ways of large diamond was discussed, which will provide reference for parameter design of diamond-impregnated bit.
  • [1]
    刘广志. 金刚石钻探手册[M]. 北京:地质出版社,1991.
    [2]
    沈立娜,阮海龙. 国内外金刚石钻头的部分技术进展[J]. 探矿工程(岩土钻掘工程),2011,38(5):78-80.

    SHEN Lina,RUAN Hailong. Some technical development of diamond bit both in china and abroad[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2011,38(5):78-80.
    [3]
    罗爱云,段隆臣,王伟雄,等. 打滑地层新型孕镶金刚石钻头[J]. 地质科技情报,2007,26(1):109-112.

    LUO Aiyun,DUAN Longchen,WANG Weixiong,et al. New-type impregnated diamond bit for drilling slipping for-mation[J]. Geological Science and Technology Information,2007,26(1):109-112.
    [4]
    孙秀梅,刘建福. 坚硬打"滑"地层孕镶金刚石钻头设计与选用[J]. 探矿工程(岩土钻掘工程),2009,36(2):75-78.

    SUN Xiumei,LIU Jianfu. Design and selection of impregnated diamond bit in hard and slipping formation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2009,36(2):75-78.
    [5]
    陆洪智,刘晓阳. 钻进打滑地层用孕镶金刚石钻头设计探讨[J]. 西部探矿工程,2004,16(11):130-131.

    LU Hongzhi,LIU Xiaoyang. Research on diamond impregnated bit for drilling in slipping formation[J]. Western-China Exploration Engineering,2004,16(11):130-131.
    [6]
    王多军,沈立娜,吴海霞,等. 坚硬致密石英岩地层用新型胎块钻头的研究与应用[J]. 西部探矿工程,2014,26(4):39-40.

    WANG Duojun,SHEN Lina,WU Haixia,et al. Research and application of a new type of block drill for hard and dense quartzite formation[J]. Western-China Exploration Engineering,2014,26(4):39-40.
    [7]
    李守巨,李德,于申. 压头作用下岩石破碎过程的细观模拟[J]. 西安科技大学学报,2016,36(6):769-774.

    LI Shouju,LI De,YU Shen. Meso-simulation for fracturing process of rock specimen under action of indenter[J]. Journal of Xi'an University of Science and Technology,2016,36(6):769-774.
    [8]
    叶兰肃. 浅谈高效率孕镶金刚石钻头金刚石参数的优化设计[J]. 地质装备,2009,10(4):17-19.

    YE Lansu. The optimizing design of diamond parameters for high efficiency impregnated diamond bit[J]. Equipment for Geotechnical Engineering,2009,10(4):17-19.
    [9]
    林雨. 岩石破碎机理在孕镶金刚石钻头设计中的应用[J]. 西部探矿工程,1994,6(6):76-78.

    LIN Yu. Application of rock breaking mechanism in the design of diamond-impregnated drill bits[J]. Western-China Exploration Engineering,1994,6(6):76-78.
    [10]
    ЧИXOTKИH B φ,段隆臣,汤凤林. 基于破碎单位体积岩石能耗量设计坚硬研磨性岩石用钻头方法的研究[J]. 探矿工程(岩土钻掘工程),2012,39(增刊2):72-76.

    ЧИXOTKИH B φ,DUAN Longchen,TANG Fenglin. Low energy consumption for fragmentizing rocks is an important criterion for designing drill bits in hard and abrasive formations[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2012,39(S2):72-76.
    [11]
    樊瑜瑾,杨晓京,李浙昆,等. 磨粒磨损中微观接触过程的有限元分析[J]. 机械工程学报,2005,41(4):35-37.

    FAN Yujin,YANG Xiaojing,LI Zhekun,et al. Micro contact process analysis in abrasive wear by finite element method[J]. Chinese Journal of Mechanical Engineering,2005,41(4):35-37.
    [12]
    薛军,马孝春,何德成. 岩石多次全过程压入硬度的测试试验[J]. 探矿工程(岩土钻掘工程),1999,26(4):42.

    XUE Jun,MA Xiaochun,HE Decheng. A study on rock indentation hardness with MTS rock mechanics test system[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),1999,26(4):42.
    [13]
    阮海龙,吴海霞,沈立娜,等. 金刚石钻进计算模型及最优参数设计[C]//第十八届全国探矿工程(岩土钻掘工程)技术学术交流年会,2015,黑龙江哈尔滨,2015:7.
    [14]
    刘碧湘,曹社强. 坚硬致密岩层打滑形式分析及金刚石钻头的选择[J]. 金刚石与磨料磨具工程,2011,31(6):79-82.

    LIU Bixiang,CAO Sheqiang. Analysis on the slipping form of diamond bit when drilling hard-rock formation and selection of diamond bit[J]. Diamond & Abrasives Engineering,2011,31(6):79-82.
    [15]
    沈立娜,阮海龙,李春,等. 坚硬致密"打滑"地层新型自锐金刚石钻头的研究[J]. 探矿工程(岩土钻掘工程),2014,41(11):57-59.

    SHEN Lina,RUAN Hailong,LI Chun,et al. Study on a new type self-sharpening diamond bit for drilling in hard-compact-slipping formation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2014,41(11):57-59.
    [16]
    FRANCA L F P,MOSTOV M,RICHARD X. Interface laws for impregnated diamond tools for a given state of wear[J]. International Journal of Rock Mechanics & Mining Sciences,2015,73:184-193
    [17]
    沈立娜,郭长江,阮海龙,等. 新型自出刃多孔胎体孕镶金刚石钻头的研究[C]//第十八届全国探矿工程(岩土钻掘工程)技术学术交流年会,2015-07,黑龙江哈尔滨,2015:726-730.
    [18]
    关舒伟. 新型孕镶金刚石钻头研制及试验[J]. 石油钻探技术,2015,43(4):129-132.

    GUAN Shuwei. Development and testing of a new type of diamond-impregnated bits[J]. Petroleum Drilling Techniques,2015,43(4):129-132.
  • Related Articles

    [1]SU Xiaoyun. Application of reflected in-seam wave detection for small faults in thick coal seams[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(1): 25-30. DOI: 10.12363/issn.1001-1986.21.11.0604
    [2]XUE Honglai, WEN Zhe. The concealed small faults detection based on gas drainage boreholes along and cross the coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 69-77. DOI: 10.3969/j.issn.1001-1986.2021.03.009
    [3]CUI Hongqing, DING Zhiwei. Concealed small fault forecasting based on Matlab and coal seam gas drainage borehole[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(2): 24-27. DOI: 10.3969/j.issn.1001-1986.2015.02.005
    [4]QIU Mei, SHI Longqing, TENG Chao, XU Dongjing, SUN Qi, LIU Lei. The prediction model of small fault extending length by using multi-variable linear regression[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 7-10. DOI: 10.3969/j.issn.1001-1986.2013.06.002
    [5]DU Zhanji, LI Shuai, CHEN Kai, PENG Bin. Simulation of deformation and failure of thin bedrock under the influence of small faults[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(1): 50-53. DOI: 10.3969/j.issn.1001-1986.2013.01.010
    [6]GAO Weidong, WANG Zhengshuai. Forecast of inrushed water volume grade from coal floor based on support vector machine with particle swarm optimization[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 44-47. DOI: 10.3969/j.issn.1001-1986.2012.06.010
    [7]WANG Xin, CUI Ruofei, CHEN TongJun. Method to predict coal seam thickness and small fault using RS and NN[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 66-68,72. DOI: 10.3969/j.issn.1001-1986.2010.03.015
    [8]YAN Jia-ping, YAO Jin-lin, TONG Hong-shu, SUN Chang-yi, WANG Lai-bin, TONG Shi-jie, HUANG Kai. Gas-gushing control of small faults in Renlou Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 19-22.
    [9]ZHANG Ya-ming, ZHAO Ming-peng, ZHOU Li-dai, FAN Guo-qiang. Measurable forecast of buried fault in front of mining roadway[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(5): 14-16.
    [10]YANG Wenqiang, QIAN Jianwei, LIU Tianfang, DONG Shouhua. AUTOMATIC DETECTION OF SMALL FAULT ON SEISMIC TIME SECTION WITH COMPUTER[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(3): 46-49.
  • Cited by

    Periodical cited type(19)

    1. 孔繁龙,李博凡,肖磊,王艳波,路雄,宁辉. 矿用伽马测井仪在察哈素矿区应用研究. 煤矿机械. 2025(01): 150-153 .
    2. 邓立博. 煤矿随掘地震探测技术在隧道领域的应用研究. 煤炭技术. 2025(03): 125-128 .
    3. 谷保泽,刘硕,刘海东. 随掘地震在乌海矿区断层超前预测中的应用研究. 煤炭技术. 2024(01): 90-95 .
    4. 张瑞,郭红星,马彦龙,曹思华,耿民. 顾桥煤矿随掘地震实时超前探测技术. 现代矿业. 2024(02): 218-221 .
    5. 龙康,陈昌敏,王康健,唐明,马彦龙. 随采随探透明地质保障系统的应用——以张集煤矿1615A工作面回采为例. 西部探矿工程. 2024(04): 171-174 .
    6. 赵会波,覃思,陈超,关奇,赵星伟,车建航. 随掘地震地质构造精细监测在山西王坡煤矿的应用. 煤田地质与勘探. 2024(06): 137-144 . 本站查看
    7. 何跃,张少斐. 基于Geoserver的地震变化数据自动化监测可视化系统. 自动化与仪器仪表. 2024(06): 122-126 .
    8. 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考. 煤炭学报. 2023(01): 1-14 .
    9. 岳博,杨焱钧,张云宁,王子琛. 离线式随掘地震在断层探测中的应用. 煤炭与化工. 2023(02): 64-67 .
    10. 杨焱钧,王季,刘海东,杨小刚. 非在线式随掘地震与钻爆法超前探测技术对比研究. 煤矿安全. 2023(03): 187-192 .
    11. 许少毅,卢文庭,王承涛,林嘉睿,邢方方. 新型煤矿巷道随掘超前探测方法研究. 仪器仪表学报. 2023(04): 206-218 .
    12. 何帝秀,姬广忠,焦文杰,张亚伟,于坤. 黏弹介质槽波超前探测数值模拟与波场分析. 煤田地质与勘探. 2023(10): 144-155 . 本站查看
    13. 许少毅,卢文庭,王承涛,林嘉睿,邢方方. 随掘连续超前探测异常体辨识成像研究. 仪器仪表学报. 2023(11): 159-175 .
    14. 王保利,程建远,金丹,杨小刚,杨辉. 煤矿井下随掘地震震源特征及探测性能研究. 煤田地质与勘探. 2022(01): 10-19 . 本站查看
    15. 蒋必辞,程建远,李萍,刘文明,余俊辉,吴国庆. 基于钻孔雷达的透明工作面构建方法. 煤田地质与勘探. 2022(01): 128-135 . 本站查看
    16. 谷保泽,代振华,李明星,陈宝辉. 透明地质保障技术构建方法——以乌海矿区为例. 煤田地质与勘探. 2022(01): 136-143 . 本站查看
    17. 程建远,陆自清,蒋必辞,李鹏,王盼. 煤矿巷道快速掘进的“长掘长探”技术. 煤炭学报. 2022(01): 404-412 .
    18. 程建远,王保利,范涛,王云宏,蒋必辞. 煤矿地质透明化典型应用场景及关键技术. 煤炭科学技术. 2022(07): 1-12 .
    19. 贾晋. 槽波地震探测在厚煤层工作面的巷道响应分析. 科技资讯. 2022(23): 223-227 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (213) PDF downloads (22) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return