SU Xiaoyun.Application of reflected in-seam wave detection for small faults in thick coal seams[J].Coal Geology & Exploration,2022,50(1):25−30. DOI: 10.12363/issn.1001-1986.21.11.0604
Citation: SU Xiaoyun.Application of reflected in-seam wave detection for small faults in thick coal seams[J].Coal Geology & Exploration,2022,50(1):25−30. DOI: 10.12363/issn.1001-1986.21.11.0604

Application of reflected in-seam wave detection for small faults in thick coal seams

More Information
  • Received Date: October 31, 2021
  • Revised Date: December 28, 2021
  • Available Online: January 26, 2022
  • Published Date: January 31, 2022
  • In general, the fault distance and extension length of small faults in the working face of thick coal seams and extremely thick coal seams are short. Due to the limitation of resolution, it is generally difficult to detect such small faults with current methods and instruments. The unclear detection of small faults will have a great impact on the efficient recovery of the intelligent working face. To solve this problem, the numerical simulation and field experiment of small fault reflected in-seam wave detection in the thick coal seam are carried out. In terms of numerical simulation, the three-component elastic wave simulation of the numerical models with small faults(the drop less than 3 m) in thick coal seams(6 m) and extremely thick coal seams(20 m) is conducted by using the staggered grid finite difference method. On the basis of the spectrum analysis of the numerical simulation results, the characteristics of the direct in-seam wave and the reflected in-seam wave in different models are studied. In terms of practical exploration, through the comprehensive interpretation of transmission and reflection data of the actual developed faults in thick and extremely thick coal seams in different mining areas, the exploration of small faults by transmitted and reflected in-seam wave is studied. The research shows that the detection of small faults in the working face of thick coal seams and extremely thick coal seams by reflected in-seam wave is more recognizable and accurate than that by transmitted in-seam wave.
  • [1]
    王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295−305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295−305.
    [2]
    董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31. DOI: 10.3969/j.issn.1001-1986.2021.01.003
    [3]
    程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.
    [4]
    刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
    [5]
    孟凡彬. 煤系地层下的小断层识别影响因素探讨[J]. 工程地球物理学报,2019,16(3):259−265. DOI: 10.3969/j.issn.1672-7940.2019.03.001

    MENG Fanbin. Discussion on factors affecting identification of small faults under coal measures strata[J]. Chinese Journal of Engineering Geophysics,2019,16(3):259−265. DOI: 10.3969/j.issn.1672-7940.2019.03.001
    [6]
    程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141. DOI: 10.3969/j.issn.1001-1986.2016.06.025

    CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141. DOI: 10.3969/j.issn.1001-1986.2016.06.025
    [7]
    苏晓云. 我国主要矿区典型煤层槽波赋存发育特征研究[J]. 煤炭工程,2020,52(10):137−142.

    SU Xiaoyun. The occurrence and development characteristics of in-seam wave in main mining areas of China[J]. Coal Engineering,2020,52(10):137−142.
    [8]
    赵朋朋. 槽波透射与反射联合勘探在小构造探测中的应用[J]. 煤炭工程,2017,49(5):47−50. DOI: 10.11799/ce201705015

    ZHAO Pengpeng. Application of ISS transmission and reflection method in detection of small structures[J]. Coal Engineering,2017,49(5):47−50. DOI: 10.11799/ce201705015
    [9]
    张国恩. 槽波地震勘探技术在采煤工作面构造探测中的应用[J]. 煤矿安全,2020,51(8):164−168.

    ZHANG Guo’en. Application of slot wave seismic exploration technology in coal mining face structure detection[J]. Safety in Coal Mines,2020,51(8):164−168.
    [10]
    姚小帅,冯磊,廉洁,等. 槽波地震反射法在断裂构造探测中的应用[J]. 中州煤炭,2015(9):101−104. DOI: 10.3969/j.issn.1003-0506.2015.09.032

    YAO Xiaoshuai,FENG Lei,LIAN Jie,et al. Application of in−seam seismic reflection method in fracture structure detection[J]. Zhongzhou Coal,2015(9):101−104. DOI: 10.3969/j.issn.1003-0506.2015.09.032
    [11]
    廉洁,李松营,王伟,等. 槽波地震勘探技术在义马矿区的应用[J]. 煤炭科学技术,2015,43(12):162−165.

    LIAN Jie,LI Songying,WANG Wei,et al. in-seam wave seismic exploration technology applied to Yima mining area[J]. Coal Science and Technology,2015,43(12):162−165.
    [12]
    赵朋朋,张军,刘毅. 槽波反射法在工作面小构造探测中的应用[J]. 中州煤炭,2016(10):138−141.

    ZHAO Pengpeng,ZHANG Jun,LIU Yi. Application of ISS reflection method in detection of small structures on working face[J]. Zhongzhou Coal,2016(10):138−141.
    [13]
    杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探,2018,46(增刊1):37−40.

    YANG Hui. Application of reflected in–seam waves in detecting small structure in Heshun mining area of Yangquan coal group[J]. Coal Geology & Exploration,2018,46(Sup.1):37−40.
    [14]
    鲍远堂,王季,王强. 凌志达15207工作面反射槽波综合探测[J]. 能源与环保,2019,41(1):58−61.

    BAO Yuantang,WANG Ji,WANG Qiang. Integrated detection of reflected in–seam wave on 15207 working face of Lingzhida coal industry company[J]. China Energy and Environmental Protection,2019,41(1):58−61.
    [15]
    姬广忠,程建远,朱培民,等. 煤矿井下槽波三维数值模拟及频散分析[J]. 地球物理学报,2012,55(2):645−654.

    JI Guangzhong,CHENG Jianyuan,ZHU Peimin,et al. 3D numerical simulation and dispersion analysis of in–seam wave in underground coal mine[J]. Chinese Journal of Geophysics,2012,55(2):645−654.
    [16]
    皮娇龙,滕吉文,刘有山. 地震槽波的数学-物理模拟初探[J]. 地球物理学报,2018,61(6):2481−2493. DOI: 10.6038/cjg2018K0529

    PI Jiaolong,TENG Jiwen,LIU Youshan. Preliminary study on the numerical−physical simulation of seismic in-seam waves[J]. Chinese Journal of Geophysics,2018,61(6):2481−2493. DOI: 10.6038/cjg2018K0529
    [17]
    苏晓云. 复合煤层中夹矸对槽波探测解释断层落差的影响[J]. 煤田地质与勘探,2020,48(3):182−187. DOI: 10.3969/j.issn.1001-1986.2020.03.026

    SU Xiaoyun. Influence of parting in composite coal seam on interpretation of fault throw by in-seam wave seismic exploration[J]. Coal Geology & Exploration,2020,48(3):182−187. DOI: 10.3969/j.issn.1001-1986.2020.03.026
    [18]
    马彦龙. 反射槽波探测陷落柱正演模拟及应用研究[J]. 能源与环保,2021,43(5):138−144.

    MA Yanlong. Forward modeling and application of reflection trough wave detection collapse column[J]. China Energy and Environmental Protection,2021,43(5):138−144.
    [19]
    王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报,2015,40(8):1879−1885.

    WANG Ji. Experiment and method of void roadway detection using reflected in–seam wave[J]. Journal of China Coal Society,2015,40(8):1879−1885.
    [20]
    姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121−124. DOI: 10.3969/j.issn.1001-1986.2017.01.024

    JI Guangzhong. Diffraction migration imaging of reflected in−seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121−124. DOI: 10.3969/j.issn.1001-1986.2017.01.024
  • Related Articles

    [1]WANG Yaoming, YE Genfei, ZHAOYongzhe, GAO Ke, LIU Weiwei, DUAN Huijun. Principle of a self-protective sealing device for MWD and its influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(4): 153-158. DOI: 10.12363/issn.1001-1986.21.11.0668
    [2]DAI Yongbo. Analysis of factors affecting the automatic high-frequency induction brazing strength of PDC[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 218-224. DOI: 10.3969/j.issn.1001-1986.2019.06.033
    [3]ZHANG Baoxin, FU Xuehai, ZHANG Qinghui, ZHOU Baoyan, LIU Zheng. Adsorbability of shale in coal measures and its influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 56-63. DOI: 10.3969/j.issn.1001-1986.2019.01.008
    [4]LIU Huihu, WU Haiyan, XU Hongjie, LAN Tianhe. Supercritical CO2 adsorption characteristics and their control factors in deep-seated coal seams in southern Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 37-42,48. DOI: 10.3969/j.issn.1001-1986.2018.05.006
    [5]ZHANG Qing-ling, CUI Yong-jun, CAO Li-ge. Analysis on different factors affecting coal isothermal adsorption test[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(2): 16-19.
    [6]LI Qian-gui, KANG Yi-li, LUO Ping-ya. Analysis of the factors affecting processes of CBM desorption, diffusion and percolation[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(4): 26-29.
    [7]LI Jian-wu, BAI Gong-zheng, LEI Bao-lin, LI Jing, ZHAO Jun-feng. Adsorptive charateristics and controlling factors of coal seams in TU-Ha basin[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 30-32.
    [8]ZHOU Cheng-gang, GAO Jun-liang. Control factors of grouting soil[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 45-48.
    [9]Fan Limin, Yang Hongke. THE OCCURRENCE CHARACTERISTICS OF SHALLOW COAL SEAMS AND THEIR INFLUENCE FACTORS IN SHENBEI MINING DISTRICT[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(3): 22-24.
    [10]Xia Yujing. INVESTIGATION DEPTH AND INFLUENCE FACTOR ANALYSIS OF STEADY STATE RAYLEIGH WAVE EXPLORATION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(2): 50-53.
  • Cited by

    Periodical cited type(3)

    1. 齐跃明,周沛,周来,蒋丹,杨雨晴,刘延卓. 考虑采动效应的闭坑矿井水硫酸盐污染规律. 煤田地质与勘探. 2024(04): 89-100 . 本站查看
    2. 张耀文,张莉丽,宋颖霞,李海君. 采动作用下煤矿地下水流场的演变规律. 科学技术与工程. 2021(12): 4830-4837 .
    3. 刘彦青. 动态回采工作面煤壁瓦斯涌出数值计算及现场应用. 煤炭科学技术. 2021(06): 195-204 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (323) PDF downloads (77) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return