YUAN Chao, ZHANG Huimei, MENG Xiangzhen, YANG Gengshe, WU Luyuan. Influence of internal friction angle on damage constitutive model of freeze-thaw rock[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 138-143. DOI: 10.3969/j.issn.1001-1986.2019.04.021
Citation: YUAN Chao, ZHANG Huimei, MENG Xiangzhen, YANG Gengshe, WU Luyuan. Influence of internal friction angle on damage constitutive model of freeze-thaw rock[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 138-143. DOI: 10.3969/j.issn.1001-1986.2019.04.021

Influence of internal friction angle on damage constitutive model of freeze-thaw rock

Funds: 

National Natural Science Foundation of China(11172232,51774231,11872299,41772333)

More Information
  • Received Date: January 21, 2019
  • Published Date: August 24, 2019
  • Based on Weibull random distribution and damage mechanics theory, starting from the characteristics of rock deformation process, the Drucker-Prager criterion was used to establish a damage constitutive model that can reflect the characteristics of rock various deformation stages. Through the conventional triaxial compression test of frozen-thawed sandstone, the Mohr stress circle was used to obtain the cohesion and internal friction angle of the sandstone under different freeze-thaw cycles. The model theoretical curve and the test curve of freeze-thaw sandstone were compared to verify the model rationality. By varying the internal friction angle, whether the friction angle has an effect on the model was analyzed. The results showed that the theoretical curve obtained by the Drucker-Prager criterion agreed well with the experimental curve, which verified the rationality of the model. The internal friction angle had big influence on the distribution variable and was linear, but had no effect on the damage constitutive model or had little effect. The research results have a good reference value for the establishment of rock constitutive relations.
  • [1]
    韩建新,李术才,汪雷,等. 基于广义Hoek-Brown强度准则的岩体应变软化行为模型[J]. 中南大学学报(自然科学版),2013,44(11):4702-4706.

    HAN Jianxin,LI Shucai,WANG Lei,et al. Model for strain-softening behavior of rock mass based on generalized Hoek-Brown strength criterion[J]. Journal of Central South University(Natural Science),2013,44(11):4702-4706.
    [2]
    黄海峰,巨能攀,蓝康文,等. 岩石统计损伤软化模型及其参数反演[J]. 长江科学院院报,2018,35(6):102-106.

    HUANG Haifeng,JU Nengpan,LAN Kangwen,et al. Statistical damage softening model for rock and back analysis of its parameters[J]. Journal of Yangtze River Scientific Research Institute,2018,35(6):102-106.
    [3]
    张德,刘恩龙,刘星炎,等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报,2018,37(4):978-986.

    ZHANG De,LIU Enlong,LIU Xingyan,et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):978-986.
    [4]
    王苏生,徐卫亚,王伟,等. 岩石统计损伤本构模型与试验[J]. 河海大学学报(自然科学版),2017,45(5):464-470.

    WANG Susheng,XU Weiya,WANG Wei,et al. The statistical damage constitutive model of rocks and its experiment[J]. Journal of Hohai University(Natural Sciences),2017,45(5):464-470.
    [5]
    房智恒. 基于Mohr-Coulomb准则的岩石损伤本构模型研究[J]. 矿业工程研究,2017,32(1):7-13.

    FANG Zhiheng. Rock damage constitutive model based on Mohr-Coulomb criterion[J]. Mineral Engineering Research,2017,32(1):7-13.
    [6]
    熊良宵,虞利军. 三种Mohr强度准则的对比分析[J]. 长江科学院院报,2016,33(4):81-85.

    XIONG Liangxiao,YU Lijun. Comparative study of three Mohr strength criteria[J]. Journal of Yangtze River Scientific Research Institute,2016,33(4):81-85.
    [7]
    LI Xiang,CAO Wengui,SU Yonghua. A statistical damage constitutive model for softening behavior of rocks[J]. Engineering Geology,2012,143/144:1-17.
    [8]
    CHEN Xin,LIAO Zhihong,PENG Xi. Deformability characteristics of jointed rock masses under uniaxial compression[J]. International Journal of Mining Sciences and Technology,2012,22(2):213-221.
    [9]
    虞松涛,邓红卫,张亚南. 温度与围压作用下的岩石损伤本构关系研究[J]. 铁道科学与工程学报,2018,15(4):893-901.

    YU Songtao,DENG Hongwei,ZHANG Yanan. The constitutive relationship of rock damage considering the ef-fect of temperature and confining pressure[J]. Journal of Railway Science and Engineering,2018,15(4):893-901.
    [10]
    张慧梅,雷利娜,杨更社. 温度与荷载作用下岩石损伤模型[J]. 岩石力学与工程学报,2014,33(增刊2):3391-3396.

    ZHANG Huimei,LEI Lina,YANG Gengshe. Damage model of rock under temperature and load[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S2):3391-3396.
    [11]
    ZHOU Shuwei,XIA Caichu,ZHAO Haibin,et al. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature[J]. Acta Geophysica,2017,65(5):893-906.
    [12]
    HUANG Shibing,LIU Quansheng,CHENG Aiping,et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Re-gions Science and Technology,2018,145:142-150.
    [13]
    张慧梅,孟祥振,彭川,等. 岩石变形全过程冻融损伤模型及其参数[J]. 西安科技大学学报,2018,38(2):260-265.

    ZHANG Huimei,MENG Xiangzhen,PENG Chuan,et al. freeze-thaw damage model and parameters rock deformation in whole process[J]. Journal of Xi'an University of Science and Technology,2018,38(2):260-265.
  • Related Articles

    [1]SU Xiaoyun. Application of reflected in-seam wave detection for small faults in thick coal seams[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(1): 25-30. DOI: 10.12363/issn.1001-1986.21.11.0604
    [2]XUE Honglai, WEN Zhe. The concealed small faults detection based on gas drainage boreholes along and cross the coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 69-77. DOI: 10.3969/j.issn.1001-1986.2021.03.009
    [3]CUI Hongqing, DING Zhiwei. Concealed small fault forecasting based on Matlab and coal seam gas drainage borehole[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(2): 24-27. DOI: 10.3969/j.issn.1001-1986.2015.02.005
    [4]QIU Mei, SHI Longqing, TENG Chao, XU Dongjing, SUN Qi, LIU Lei. The prediction model of small fault extending length by using multi-variable linear regression[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 7-10. DOI: 10.3969/j.issn.1001-1986.2013.06.002
    [5]DU Zhanji, LI Shuai, CHEN Kai, PENG Bin. Simulation of deformation and failure of thin bedrock under the influence of small faults[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(1): 50-53. DOI: 10.3969/j.issn.1001-1986.2013.01.010
    [6]GAO Weidong, WANG Zhengshuai. Forecast of inrushed water volume grade from coal floor based on support vector machine with particle swarm optimization[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 44-47. DOI: 10.3969/j.issn.1001-1986.2012.06.010
    [7]WANG Xin, CUI Ruofei, CHEN TongJun. Method to predict coal seam thickness and small fault using RS and NN[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 66-68,72. DOI: 10.3969/j.issn.1001-1986.2010.03.015
    [8]YAN Jia-ping, YAO Jin-lin, TONG Hong-shu, SUN Chang-yi, WANG Lai-bin, TONG Shi-jie, HUANG Kai. Gas-gushing control of small faults in Renlou Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 19-22.
    [9]ZHANG Ya-ming, ZHAO Ming-peng, ZHOU Li-dai, FAN Guo-qiang. Measurable forecast of buried fault in front of mining roadway[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(5): 14-16.
    [10]YANG Wenqiang, QIAN Jianwei, LIU Tianfang, DONG Shouhua. AUTOMATIC DETECTION OF SMALL FAULT ON SEISMIC TIME SECTION WITH COMPUTER[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(3): 46-49.
  • Cited by

    Periodical cited type(19)

    1. 孔繁龙,李博凡,肖磊,王艳波,路雄,宁辉. 矿用伽马测井仪在察哈素矿区应用研究. 煤矿机械. 2025(01): 150-153 .
    2. 邓立博. 煤矿随掘地震探测技术在隧道领域的应用研究. 煤炭技术. 2025(03): 125-128 .
    3. 谷保泽,刘硕,刘海东. 随掘地震在乌海矿区断层超前预测中的应用研究. 煤炭技术. 2024(01): 90-95 .
    4. 张瑞,郭红星,马彦龙,曹思华,耿民. 顾桥煤矿随掘地震实时超前探测技术. 现代矿业. 2024(02): 218-221 .
    5. 龙康,陈昌敏,王康健,唐明,马彦龙. 随采随探透明地质保障系统的应用——以张集煤矿1615A工作面回采为例. 西部探矿工程. 2024(04): 171-174 .
    6. 赵会波,覃思,陈超,关奇,赵星伟,车建航. 随掘地震地质构造精细监测在山西王坡煤矿的应用. 煤田地质与勘探. 2024(06): 137-144 . 本站查看
    7. 何跃,张少斐. 基于Geoserver的地震变化数据自动化监测可视化系统. 自动化与仪器仪表. 2024(06): 122-126 .
    8. 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考. 煤炭学报. 2023(01): 1-14 .
    9. 岳博,杨焱钧,张云宁,王子琛. 离线式随掘地震在断层探测中的应用. 煤炭与化工. 2023(02): 64-67 .
    10. 杨焱钧,王季,刘海东,杨小刚. 非在线式随掘地震与钻爆法超前探测技术对比研究. 煤矿安全. 2023(03): 187-192 .
    11. 许少毅,卢文庭,王承涛,林嘉睿,邢方方. 新型煤矿巷道随掘超前探测方法研究. 仪器仪表学报. 2023(04): 206-218 .
    12. 何帝秀,姬广忠,焦文杰,张亚伟,于坤. 黏弹介质槽波超前探测数值模拟与波场分析. 煤田地质与勘探. 2023(10): 144-155 . 本站查看
    13. 许少毅,卢文庭,王承涛,林嘉睿,邢方方. 随掘连续超前探测异常体辨识成像研究. 仪器仪表学报. 2023(11): 159-175 .
    14. 王保利,程建远,金丹,杨小刚,杨辉. 煤矿井下随掘地震震源特征及探测性能研究. 煤田地质与勘探. 2022(01): 10-19 . 本站查看
    15. 蒋必辞,程建远,李萍,刘文明,余俊辉,吴国庆. 基于钻孔雷达的透明工作面构建方法. 煤田地质与勘探. 2022(01): 128-135 . 本站查看
    16. 谷保泽,代振华,李明星,陈宝辉. 透明地质保障技术构建方法——以乌海矿区为例. 煤田地质与勘探. 2022(01): 136-143 . 本站查看
    17. 程建远,陆自清,蒋必辞,李鹏,王盼. 煤矿巷道快速掘进的“长掘长探”技术. 煤炭学报. 2022(01): 404-412 .
    18. 程建远,王保利,范涛,王云宏,蒋必辞. 煤矿地质透明化典型应用场景及关键技术. 煤炭科学技术. 2022(07): 1-12 .
    19. 贾晋. 槽波地震探测在厚煤层工作面的巷道响应分析. 科技资讯. 2022(23): 223-227 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (193) PDF downloads (12) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return