WANG Li, LI Xi'an, HONG Bo, DU Shaoshao, ZHANG Hangbo, ZHAO Ning. Effect of clay content on shear strength of loess[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 179-185. DOI: 10.3969/j.issn.1001-1986.2019.03.028
Citation: WANG Li, LI Xi'an, HONG Bo, DU Shaoshao, ZHANG Hangbo, ZHAO Ning. Effect of clay content on shear strength of loess[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 179-185. DOI: 10.3969/j.issn.1001-1986.2019.03.028

Effect of clay content on shear strength of loess

Funds: 

National Natural Science Foundation of China(41572264)

More Information
  • Received Date: June 16, 2018
  • Published Date: June 24, 2019
  • The experimental research about effect of different clay content on shear strength of loess was carried out to reveal the influence of clay content on shear strength and its microscopic mechanism, and then a scientific basis for engineering practice of loess was provided. Self-made wet sieve device under negative pressure was applied to screen loess samples with different clay content. Different clay content of the loess samples were made to the same dry density, but with different moisture content using static pressure method, and then were taken direct shear test. The results show that with the increase of moisture content, the cohesion of samples with different clay content firstly increased and then decreased, and reached the maximum near 14%, while the friction angle showed a monotonic downward trend. With the increase of clay content, the cohesion showed a rising trend, while the friction angle first decreased and then increased. The effect of clay content on shear strength of loess can be explained by its microstructure.
  • [1]
    宋章,程谦恭,张炜,等. 原状黄土显微结构特征与湿陷性状分析[J]. 工程地质学报,2007,15(5):646-653.

    SONG Zhang,CHENG Qiangong,ZHANG Wei,et al. Analysis of microstructure feature and collapsibility of undisturbed loess[J]. Journal of Engineering Geology,2007,15(5):646-653.
    [2]
    孙建中. 黄土学[M]. 香港:香港考古学会出版,2005.
    [3]
    王力,李喜安,骆建文,等. 黄土颗粒分离方法试验研究[J]. 水土保持研究,2017,24(6):6-10.

    WANG Li,LI Xi'an,LUO Jianwen,et al. Experimental study on the loess particle separation method[J]. Research of Soil & Water Conservation,2017,24(6):6-10.
    [4]
    王永焱. 中国黄土的结构特征及物理力学性质[M]. 北京:科学出版社,1990.
    [5]
    赵宁. 黏粒组分对黄土力学性质的影响及其微观机理试验研究[D]. 西安:长安大学,2017.
    [6]
    DAFALLA M A. Effects of clay and moisture content on di-rectshear tests for clay-sand mixtures[J]. Advances in Materials Science and Engineering,2013,562726.
    [7]
    张晓丽,周进,黄志全,等. 黏粒含量对磁县段膨胀土抗剪强度影响的试验研究[J]. 工程地质学报,2016,24(1):109-115.

    ZHANG Xiaoli,ZHOU Jin,HUANG Zhiquan,et al. Experimental study on effect of clay content on shear strength of expansive soil at county[J]. Journal of Engineering Geology,2016,24(1):109-115.
    [8]
    顾成权,孙艳. 土体内聚力随含水量、黏粒含量及干密度变化关系探讨[J]. 水文地质工程地质,2005,32(1):34-36.

    GU Chengquan,SUN Yan. Discussion on the cohesion of soil changing with water content,cohesive soil content and dry density[J]. Hydrogeology and Engineering Geology,2005,32(1):34-36.
    [9]
    帅常娥,石成,彭鹏. 滑带土中黏粒含量及含水量的变化对其强度影响的试验研究[J]. 勘察科学技术,2012(5):1-5.

    SHUAI Chang'e,SHI Cheng,PENG Peng. Experimental study on change of clay content and water content in sliding zone soils on strength[J]. Site Investigation Science and Technology,2012(5):1-5.
    [10]
    陈永健,赵艳林,文松松,等. 黏粒含量对砂土强度和压缩特性的影响[J]. 科学技术与工程,2017,17(23):281-286.

    CHEN Yongjian,ZHAO Yanlin,WEN Songsong,et al. Effect of clay content on the strength and compressibility of sandy soil[J]. Science Technology and Engineering,2017,17(23):281-286.
    [11]
    刘雪珠,陈国兴. 黏粒含量对南京粉细砂液化影响的试验研究[J]. 地震工程与工程振动,2003,23(3):150-155.

    LIU Xuezhu,CHEN Guoxing. Experimental study on influence of clay particle content on liquefaction of Nanjing fine sand[J]. Earthquake Engineering and Engineering Vibration,2003,23(3):150-155.
    [12]
    衡朝阳,何满潮,裘以惠. 含黏粒砂土抗液化性能的试验研究[J]. 工程地质学报,2001,9(4):339-344.

    HENG Chaoyang,HE Manchao,QIU Yihui. Experimental study of liquefaction-resistant characteristics of clayed sand[J]. Journal of Engineering Geology,2001,9(4):339-334.
    [13]
    吴建平,吴世明. 重塑含黏粒砂土的动模量和液化势[J]. 浙江大学学报(工学版),1988,22(6):13-19.

    WU Jianping,WU Shiming. Restore contain clay dynamic modulus and liquefaction potential of sandy soil[J]. Journal of Zhejiang University(Natural Science Edition),1988,22(6):13-19.
    [14]
    唐小微,李涛,张西文,等. 黏粒含量对砂土静动力液化影响的试验[J]. 哈尔滨工程大学学报,2016,37(3):332-337.

    TANG Xiaowei,LI Tao,ZHANG Xiwen,et al. Experiment of effect of clay contentonstatic and dynamic liquefaction of sand[J]. Journal of Harbin Engineering University,2016,37(3):332-337.
    [15]
    王力,李喜安,赵宁,等. 黏粒含量对黄土物理力学性质的影响[J]. 中国地质灾害与防治学报,2018,29(3):133-143.

    WANG Li,LI Xi'an,ZHAO Ning,et al. Effect of clay content on physical and mechanical properties of loess soils[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):133-143.
    [16]
    中华人民共和国水利部. SL237-1999土工试验规程[M]. 北京:中国水利水电出版社,1999.
    [17]
    王娟娟,张秀丽,王铁行. 考虑含水量和密度影响的压实黄土抗剪强度特性研究[J]. 西安建筑科技大学学报(自然科学版),2014,46(5):687-691.

    WANG Juanjuan,ZHANG Xiuli,WANG Tiexing. The shear strength research of compacted loess considering the impact of moisture content and dry density[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition),2014,46(5):687-691.
    [18]
    许四法,王志健,胡琦,等. 重塑非饱和粉质黏土抗剪强度特性试验研究[J]. 浙江工业大学学报,2015,43(2):227-231.

    XU Sifa,WANG Zhijian,HU Qi,et al. An experimental study on the shear strength characteristics of remolded un-saturated silty clay[J]. Journal of Zhejiang University of Technology,2015,43(2):227-231.
    [19]
    王勇,王艳丽. 细粒含量对饱和砂土动弹性模量与阻尼比的影响研究[J]. 岩土力学,2011,32(9):2623-2628.

    WANG Yong,WANG Yanli. Study of effects content on dynamic elastic modulus and damping ratio of saturated sand[J]. Rock and Soil Mechanics,2011,32(9):2623-2628.
    [20]
    THEVANAYAGAM S,FIORILLO M,LIANG J,et al. Effect of non-plastic fines on undrained cyclic strength of silty sands[J]. Geotechnical Special Publication,2000,295(107):77-91.
    [21]
    黄磊,李喜安,蔡玮彬,等. 延安新区马兰黄土湿陷特性的PFC2D模拟[J]. 煤田地质与勘探,2017,45(3):119-124.

    HUANG Lei,LI Xi'an,CAI Weibin,et al. Simulation of collapsible characteristics of Malan loess in Yan'an new area by PFC2D[J]. Coal Geology & Exploration,2017,45(3):119-124.
    [22]
    朱建群. 含细粒砂土的强度特征与稳态性状研究[D]. 武汉:中国科学院(武汉岩土力学研究所),2007.
    [23]
    THEVANAYAGAM S. Effect of fines and confining stress on undrained shear strength of silty sands[J]. Journal of Geotechnical & Geoenvironmental Engineering,1998,124(6):479-491.
  • Related Articles

    [1]ZHANG Suhui, YAO Ningping, LIU Qingxiu, LIU Huan, WANG Dechuan. Effect of cadmium-free filler metal on mechanical properties and microstructure of PDC cutters[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(10): 177-185. DOI: 10.12363/issn.1001-1986.24.04.0266
    [2]ZHANG Suhui, YAO Ningping, LIU Qingxiu, LIU Huan, WANG Dechuan. Effect of cadmium-free filler metal on mechanical properties and microstructure of PDC cutters[J]. COAL GEOLOGY & EXPLORATION.
    [3]ZHANG Xiaodong, ZHANG Yu, ZHANG Shuo, LI Guizhong, LI Xianzhong. Influencing mechanisms of SC-CO2 extraction on the microstructures of high-rank tectonic coals[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(5): 45-53. DOI: 10.12363/issn.1001-1986.22.10.0778
    [4]XIE Xiao, WANG Luyao, DENG Lejuan, ZHANG Guowei. Study on the microscopic mechanism of the loess improved by quicklime[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 193-199. DOI: 10.3969/j.issn.1001-1986.2021.06.023
    [5]LONG Jianhui, ZHANG Lingling, XING Xianli, GUO Xiaojuan. Study on the strength and microstructure of loess under freeze-thaw based on temperature path[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 242-249. DOI: 10.3969/j.issn.1001-1986.2021.04.029
    [6]CUI Hengtao, WU Zhonghu, LOU Yili, ZUO Yujun, SUN Wenjibin, LIU Hao. Numerical experiment on damage and fracture of shale based on micro-scale[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 137-143. DOI: 10.3969/j.issn.1001-1986.2020.05.017
    [7]CHEN Liuyu, LI Xijian, SHEN Zhonghui, XU Shiqing, MA Shengxiang, YIN Xin. Effect of acidification on the microstructure and physical properties of shale[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 100-107. DOI: 10.3969/j.issn.1001-1986.2020.03.015
    [8]YUAN Chao, ZHANG Huimei, MENG Xiangzhen, YANG Gengshe, WU Luyuan. Influence of internal friction angle on damage constitutive model of freeze-thaw rock[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 138-143. DOI: 10.3969/j.issn.1001-1986.2019.04.021
    [9]ZHAO Bin, WANG Zhiyin, WU Jinpeng. Relation between mineralogical composition and microstructure to the mechanical properties of rock materials[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(3): 59-63,67. DOI: 10.3969/j.issn.1001-1986.2013.03.014
    [10]CHENG Yu-xiang, DU Dong-ju, LI Zhong-liang. Mechanism experimental investigation of compression transform of structured hydraulic fill[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(4): 46-49,53.
  • Cited by

    Periodical cited type(8)

    1. 尹会永,冯庆富,董方营,周威,李永杰,王印. 地垒构造近距离双煤层开采断层导水规律研究. 煤矿安全. 2025(03): 197-206 .
    2. 王方田,孙暖,张村,郭中权,窦凤金. 矿井采空区水库水岩作用净水机理研究进展及展望. 绿色矿山. 2024(03): 246-257 .
    3. 杨月堂. 煤矿顶部隔水性能多尺度评价. 能源与环保. 2023(02): 268-274 .
    4. 姜春露,黄文迪,傅先杰,郑刘根,程世贵,单崇磊. 淮南阜东矿区二叠系砂岩高盐地下水低硫酸盐特征及成因机制. 煤田地质与勘探. 2023(11): 74-82 . 本站查看
    5. 尹会永,郎宁,周鑫龙,曹始友,王鹏,徐国梁. 基于断层封闭性与数值模拟的断层导水性综合评价. 煤矿安全. 2022(03): 200-207 .
    6. 王真真. 柳林矿区聚财塔断层导水性研究. 华北自然资源. 2021(03): 47-48 .
    7. 杨婷婷,许光泉,ANESU Mabaire. 淮南潘谢矿区岩溶水化学特征及其形成机制研究. 地球与环境. 2021(03): 238-249 .
    8. 丁同福,汪敏华,赵俊峰. 华北型淮南煤田大构造成因分析及构造控水研究. 煤田地质与勘探. 2020(04): 102-108 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (172) PDF downloads (14) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return