Citation: | XIE Xiao, WANG Luyao, DENG Lejuan, ZHANG Guowei. Study on the microscopic mechanism of the loess improved by quicklime[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 193-199. DOI: 10.3969/j.issn.1001-1986.2021.06.023 |
[1] |
LATIFI N, RASHID A S A, SIDDIQUA S, et al. Strength measurement and textural characteristics of tropical residual soil stabilised with liquid polymer[J]. Measurement, 2016, 91: 46–54. DOI: 10.1016/j.measurement.2016.05.029
|
[2] |
杨爱武, 闫澍旺, 杜东菊, 等. 碱性环境对固化天津海积软土强度影响的试验研究[J]. 岩土力学, 2010, 31(9): 2930–2934. DOI: 10.3969/j.issn.1000-7598.2010.09.040
YANG Aiwu, YAN Shuwang, DU Dongju, et al. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. Rock and Soil Mechanics, 2010, 31(9): 2930–2934. DOI: 10.3969/j.issn.1000-7598.2010.09.040
|
[3] |
DHAR S, HUSSAIN M. The strength and microstructural behavior of lime stabilized subgrade soil in road construction[J]. International Journal of Geotechnical Engineering, 2021, 15(4): 471–483. DOI: 10.1080/19386362.2019.1598623
|
[4] |
王章琼, 白俊龙, 叶张颜. 过量石灰对细粒土改良效果"负效应"机理的宏–细观试验研究[J]. 武汉工程大学学报, 2020, 42(3): 316–320.
WANG Zhangqiong, BAI Junlong, YE Zhangyan. Mechanism of negative effect of excessive lime addition on improvement of fine grained soil by macro-microscopic test[J]. Journal of Wuhan Institute of Technology, 2020, 42(3): 316–320.
|
[5] |
张玉, 何晖, 曾志英, 等. 粉煤灰–石灰改良黄土与压实黄土强度特性对比分析[J]. 科学技术与工程, 2021, 21(8): 3265–3273. DOI: 10.3969/j.issn.1671-1815.2021.08.041
ZHANG Yu, HE Hui, ZENG Zhiying, et al. Comparison of strength characteristics of fly ash-lime improved loess and compacted loess[J]. Science Technology and Engineering, 2021, 21(8): 3265–3273. DOI: 10.3969/j.issn.1671-1815.2021.08.041
|
[6] |
杨爱武, 王韬, 许再良. 石灰及其外加剂固化天津滨海软土的试验研究[J]. 工程地质学报, 2015, 23(5): 996–1004.
YANG Aiwu, WANG Tao, XU Zailiang. Experimental study on lime and its additional agent to cure Tianjin marine soft soil[J]. Journal of Engineering Geology, 2015, 23(5): 996–1004.
|
[7] |
张豫川, 姚永国, 周泓. 长龄期改良黄土抗剪强度与渗透性试验研究[J]. 岩土力学, 2017, 38(增刊2): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm
ZHANG Yuchuan, YAO Yongguo, ZHOU Hong. Experimental study of shear strength and permeability of improved loess with long age[J]. Rock and Soil Mechanics, 2017, 38(Sup. 2): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2025.htm
|
[8] |
王立峰, 谢锡荣, 王甜. 石灰改良土的力学特性及本构模型研究[J]. 科技通报, 2019, 35(11): 187–192. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201911037.htm
WANG Lifeng, XIE Xirong, WANG Tian. Study on mechanical properties and constitutive model of remolding lime soil[J]. Bulletin of Science and Technology, 2019, 35(11): 187–192. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201911037.htm
|
[9] |
OSULA D O A. A comparative evaluation of cement and lime modification of laterite[J]. Engineering Geology, 1996, 42(1): 71–81. DOI: 10.1016/0013-7952(95)00067-4
|
[10] |
杨广庆, 管振祥. 高速铁路路基改良填料的试验研究[J]. 岩土工程学报, 2001, 23(6): 682–685. DOI: 10.3321/j.issn:1000-4548.2001.06.007
YANG Guangqing, GUAN Zhenxiang. Experimental study on improved soil for high-speed railway subgrade[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 682–685. DOI: 10.3321/j.issn:1000-4548.2001.06.007
|
[11] |
CUI Zhendong, JIA Yajie. Analysis of electron microscope images of soil pore structure for the study of land subsidence in centrifuge model tests of high-rise building groups[J]. Engineering Geology, 2013, 164: 107–116. DOI: 10.1016/j.enggeo.2013.07.004
|
[12] |
罗浩, 伍法权, 常金源, 等. 马兰黄土孔隙结构特征: 以赵家岸地区黄土为例[J/OL]. 工程地质学报, 2021: 1–7[1-10-22]. https://doi.org/10.13544/j.cnki.jeg.2014-0392
LUO Hao, WU Faquan, CHANG Jinyuan, et al. Pore characteristics of Malan Loess: A case study of Zhaojia'an area loess[J/OL]. Journal of Engineering Geology, 2021: 1–7[2021-10-22]. https://doi.org/10.13544/j.cnki.jeg.2014-0392
|
[13] |
中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration of Market Supervision and Administration. GB/T 50123—2019 Standard for geotechnical testing method[S]. Beijing: China Planning Press, 2019.
|
[14] |
谈云志, 喻波, 刘晓玲, 等. 压实红黏土失水收缩过程的孔隙演化规律[J]. 岩土力学, 2015, 36(2): 369–375.
TAN Yunzhi, YU Bo, LIU Xiaoling, et al. Pore size evolution of compacted laterite under desiccation shrinkage process effects[J]. Rock and Soil Mechanics, 2015, 36(2): 369–375.
|
[15] |
井彦林, 王昊, 陶春亮, 等. 非饱和黄土的接触角与孔隙特征试验[J]. 煤田地质与勘探, 2019, 47(5): 157–162. DOI: 10.3969/j.issn.1001-1986.2019.05.022
JING Yanlin, WANG Hao, TAO Chunliang, et al. Experimental study on contact angle and pore characteristics of unsaturated loess[J]. Coal Geology & Exploration, 2019, 47(5): 157–162. DOI: 10.3969/j.issn.1001-1986.2019.05.022
|
[16] |
WAI N C W, HAMED S, BELAL H S K, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2015, 53(8): 1258–1269.
|
[17] |
马富丽, 白晓红, 王梅. 黄土微观结构与湿陷性的定量分析[C]//首届中国中西部地区土木建筑学术年会论文集: 建设工程安全理论与应用. 徐州: 中国矿业大学出版社, 2011: 402–409.
MA Fuli, BAI Xiaohong, WANG Mei. Quantitative analysis of microstructure and collapsibility of loess[C]//First Annual Conference on Civil Architecture in Midwestern China. Xuzhou: China University of Mining and Technology, 2011: 402–409.
|
[18] |
刘煜, 孟令县. 多孔氧化钙孔结构特征的数学描述与分析[J]. 中国电机工程学报, 2002, 22(7): 145–149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200207031.htm
LIU Yu, MENG Lingxian. The mathematical description and analysis on the characteristics of pore structure of porous calcium oxide[J]. Proceedings of the CSEE, 2002, 22(7): 145–149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200207031.htm
|
[19] |
王淑云, 鲁晓兵, 时忠民. 颗粒级配和结构对粉砂力学性质的影响[J]. 岩土力学, 2005, 26(7): 1029–1032. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200507005.htm
WANG Shuyun, LU Xiaobing, SHI Zhongmin. Effects of grain size distribution and structure on mechanical behavior of silty sands[J]. Rock and Soil Mechanics, 2005, 26(7): 1029–1032. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200507005.htm
|
[20] |
房营光. 土体力学特性尺度效应的三轴抗剪试验分析[J]. 水利学报, 2014, 45(6): 742–748. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm
FANG Yingguang. Experimental investigation on the size effect of soil mechanic characteristics by tri-axial shear test[J]. Journal of Hydraulic Engineering, 2014, 45(6): 742–748. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm
|
[21] |
梁建勋. 矿物成分及粒径对土力学特性影响的试验与研究[D]. 广州: 华南理工大学, 2020.
LIANG Jianxun. Experiment and research on the influence of mineral composition and particle size on soil mechanical properties[D]. Guangzhou: South China University of Technology, 2020.
|
[22] |
粟华忠, 和法国, 邓津, 等. 兰州新区黄土微观参数与剪切强度c、φ关联拟合分析[J]. 地震工程学报, 2020, 42(2): 521–528. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202002035.htm
SU Huazhong, HE Faguo, DENG Jin, et al. Relationship between microscopic parameters and shear strength c, φ of loess in Lanzhou new district[J]. China Earthquake Engineering Journal, 2020, 42(2): 521–528. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202002035.htm
|
[23] |
徐实, 杨有海, 耿煊, 等. 石灰改性黄土的强度特性试验研究[J]. 兰州交通大学学报(自然科学版), 2006, 25(6): 97–100.
XU Shi, YANG Youhai, GENG Xuan, et al. Experimental study on strength property of lime improved loess[J]. Journal of Lanzhou Jiaotong University(Natural Sciences), 2006, 25(6): 97–100.
|
[24] |
王章琼, 高云, 沈雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416–421.
WANG Zhangqiong, GAO Yun, SHEN Lei, et al. Engineering properties of lime-modified red sandstone residual soil[J]. Journal of Engineering Geology, 2018, 26(2): 416–421.
|
[25] |
祝艳波, 李红飞, 巨之通, 等. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221–233. DOI: 10.3969/j.issn.1001-1986.2021.04.027
ZHU Yanbo, LI Hongfei, JU Zhitong, et al. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. Coal Geology & Exploration, 2021, 49(4): 221–233. DOI: 10.3969/j.issn.1001-1986.2021.04.027
|
[26] |
谈云志, 占少虎, 胡焱, 等. 石灰–红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104–112.
TAN Yunzhi, ZHAN Shaohu, HU Yan, et al. Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin[J]. Rock and Soil Mechanics, 2021, 42(1): 104–112.
|