DONG Yinping, LIU Yong, SHEN Youyi, ZHU Yalong, TIAN Zhongbin, HUANG Handong. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 90-96,101. DOI: 10.3969/j.issn.1001-1986.2018.05.014
Citation: DONG Yinping, LIU Yong, SHEN Youyi, ZHU Yalong, TIAN Zhongbin, HUANG Handong. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 90-96,101. DOI: 10.3969/j.issn.1001-1986.2018.05.014

Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor

Funds: 

Provincial Coal Basis Key Scientific and Technological Project(MQ2014-02)

More Information
  • Received Date: December 08, 2017
  • Published Date: October 24, 2018
  • The exploration and development of CBM is one of the hotspots in the exploration of unconventional oil and gas resources in China, and a lot of breakthrough on CBM exploration and development have been made in recent years. However, it is difficult to identify CBM with strong coal seam heterogeneity and adsorption state, and it is of great importance to use the lateral advantage of seismic data to predict the sweet spots of CBM reservoirs in case of scarce drilling data and insuffisant use of post-stack seismic data. Conventional post-stack seismic inversion method can identify the coal seams, but cannot predict the gas-bearing property of coal seams. However, the fluid activity factor based on seismic attenuation theory can effectively characterize the permeability of the reservoir and recognize the gas-bearing coal. In this paper, we propose to use the fluid activity as a sign of hydrocarbon content. First, the matching pursuit method was applied for seismic wavefield separation. Then, the fluid activity factor was calculated after building the relationship between the gas-bearing coal and seismic attenuation. Based on the above steps, we can obtain the high-precision distribution of CBM sweet spots. This method is faithful to seismic data and can be applied without the limitations of structural and sequential interpretation, thus can objectively reflect the gas-bearing situation. Theoretic model test and the application of coalbed gas exploration in Qinshui basin prove the effectiveness and feasibility of the proposed method.
  • [1]
    霍丽娜,徐礼贵,邵林海,等. 煤层气"甜点区"地震预测技术及其应用[J]. 天然气工业,2014,34(8):46-52.

    HUO Lina,XU Ligui,SHAO Linhai,et al. Seismic prediction technologies of CBM sweet spots and their application[J]. Natural Gas Industry,2014,34(8):46-52.
    [2]
    田忠斌,王红冬,金法礼,等. 我国气、肥煤储层煤层气资源开发潜力评价[J]. 煤炭科学技术,2017,45(2):95-101,114.

    TIAN Zhongbin,WANG Hongdong,JIN Fali,et al. Evaluation on coalbed methane development potential of gas coal and fat coal reservoirs in China[J]. Coal Science and Technology,2017, 45(2):95-101,114.
    [3]
    贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.

    JIA Chengzao,ZHENG Min,ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129-136.
    [4]
    吴财芳,秦勇,傅雪海,等. 煤层气成藏的宏观动力能条件及其地质演化过程——以山西沁水盆地为例[J]. 地学前缘, 2005,12(3):299-308.

    WU Caifang,QIN Yong,FU Xuehai,et al. Macroscopic dynamic energies for the formation of coalbed gas reservoirs and their geological evolution:A case study from Qinshui basin in Shanxi Province[J]. Earth Science Frontiers,2005,12(3):299-308.
    [5]
    刘贻军,曾祥洲,胡刚,等. 贵州煤层气储层特征及勘探开发技术对策——以比德-三塘盆地为例[J]. 煤田地质与勘探, 2017,45(1):71-74.

    LIU Yijun,ZENG Xiangzhou,HU Gang,et al. Characteristics and technical measures of exploration and development of coalbed methane reservoir in Guizhou Province:A case of Bide-Santang area[J]. Coal Geology & Exploration,2017,45(1):71-74.
    [6]
    程彦,张华,王敏. 弹性波阻抗反演在煤层气储层预测中的应用[J]. 煤田地质与勘探,2011,39(2):70-73.

    CHENG Yan,ZHANG Hua,WANG Min. The application of elastic impedance inversion in prediction of CBM reservoir[J]. Coal Geology & Exploration,2011,39(2):70-73.
    [7]
    CASTAGNA J P,SUN Shengjie,SIEGFRIED R W. Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J]. Leading Edge,2003,22(2):120-122,124-127.
    [8]
    常锁亮,刘大锰,林玉成,等. 频谱分解技术在煤田精细构造解释及煤含气性预测中的应用[J]. 煤炭学报,2009,34(8):1015-1021.

    CHANG Suoliang,LIU Dameng,LIN Yucheng,et al. Application of spectral decomposition for fine seismic structural interpretation in coalfield and gas-bearing property predication of coal seam[J]. Journal of China Coal Society,2009,34(8):1015-1021.
    [9]
    董守华. 地震资料煤层横向预测与评价方法[M]. 徐州:中国矿业大学出版社,2004:44-49.
    [10]
    董宁,杨立强. 基于小波变换的吸收衰减技术在塔河油田储层预测中的应用研究[J]. 地球物理学进展,2008,23(2):533-538.

    DONG Ning,YANG Liqiang. Application of absorption and attenuation based on wavelet transform for prediction of reservoir in Tahe oilfield[J]. Progress in Geophysics,2008,23(2):533-538.
    [11]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2):168-178.
    [12]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2):179-191.
    [13]
    GOLOSHUBIN G M, KORNEEV A,VINGALOV V M. Seismic low-frequency effects from oil-saturated reservoir zones[C]//SEG Technical Program Expanded Abstracts. 2002:1813-1816.
    [14]
    GOLOSHUBIN G,VANSCHUYVER C,KORNEEV V,et al. Reservoir imaging using low frequencies of seismic reflections[J]. Leading Edge,2006,25(5):527-531.
    [15]
    SILIN D B, KORNEEV V, GOLOSHUBIN G, et al. Low-frequency asymptotic analysis of seismic reflection from a fluid-saturated medium[J]. Transport in Porous Media,2006, 62(3):283-305.
    [16]
    杨静,闫晶晶. GeoEast流体活动性属性技术在S井区储层描述中的应用[J]. 石油地球物理勘探,2014,49(增刊1):216-220.

    YANG Jing,YAN Jingjing. Reservoir characterization with fluid mobility attribute provided by GeoEast[J]. Oil Geophysical Prospecting,2014,49(S1):216-220.
    [17]
    黄捍东,向坤,王彦超,等. 匹配追踪法在碳酸盐岩流体检测中的应用——以哈萨克斯坦楚-萨雷苏盆地为例[J]. 石油学报, 2015,36(增刊2):184-193.

    HUANG Handong,XIANG Kun,WANG Yanchao,et al. Application of matching pursuit method for detection of fluid in carbonate rock:A case study from Chu-Sarysu Basin in Kazakhstan[J]. Acta Petrolei Sinica,2015,36(S2):184-193.
    [18]
    黄捍东,郭飞,汪佳蓓,等. 高精度地震时频谱分解方法及应用[J]. 石油地球物理勘探,2012,47(5):773-780.

    HUANG Handong,GUO Fei,WANG Jiabei,et al. High precision seismic time-frequency spectrum decomposition method and its application[J]. Oil Geophysical Prospecting,2012,47(5):773-780.
    [19]
    高静怀,陈文超,李幼铭,等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报,2003,46(4):526-532.

    GAO Jinghuai,CHEN Wenchao,LI Youming,et al. Generalized S-transform and seismic response and analysis of thin interbeds[J]. Chinese Journal of Geophysics,2003,46(4):526-532.
  • Related Articles

    [1]YANG Xiaohui, YU Pengfei, ZHANG Jiawei. An improved MP-NMO correction method based on multiparameter fitting and its application[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(5): 1-11. DOI: 10.12363/issn.1001-1986.24.10.0663
    [2]YANG Xiaohui, YU Pengfei, ZHANG Jiawei. A multi-parameters fitting approach for matching pursuit moveout correction and its application[J]. COAL GEOLOGY & EXPLORATION.
    [3]HAN Wenlong, WANG Yanbin, LIU Du, CHANG Hong, DING Tao. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016
    [4]ZHOU Zhusheng, CHEN Youliang. Generalized S-transform with variable-factor and its time-frequency filtering[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(6): 63-66,71. DOI: 10.3969/j.issn.1001-1986.2011.06.015
    [5]YAN Jian-ping, CAI Jin-gong, ZHENG De-shun, SUI Lu-ning. The method of resolution matching and depth correction in image logging data processing[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 62-65.
    [6]JIE Hua-ming, HU Guang-dao, CHEN Guang-zhou, DING Hua. Application of projection pursuit evaluation model on stability classification of surrounding rock mass in tunnel[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(5): 51-53.
    [7]HU Jian-ping, BAO Qian-zong, CHEN Ya-dong, WANG Wen-bing. The application of time-frequency analysis to Rayleigh waves prospecting[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(6): 53-55.
    [8]WANG Xiao-mei, ZHANG Qun, ZHANG Pei-he, CHEN Hong-chun. Discussion on the method of history matching of coalbed methane well[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(1): 20-22.
    [9]AI Tian-jie, HOU Hui-min, ZHENG Mei-rong. Application of coal petrology to coking and coal-matching-case study in Coking factory of Xuanhua Steal Corporation[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 4-6.
    [10]DONG Enqing, LIU Guizhong, ZHANG Zongping. A DENOISING METHOD OF SEISMIC DATA BASED ON ITERATIVE TIME-VARIANT FILTER OF DISCRETE GABOR TRANSFORM[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(6): 48-51.
  • Cited by

    Periodical cited type(6)

    1. 张遵国,钱清侠,陈毅,唐朝. 高压气态CO_2吸附/解吸作用对烟煤的孔隙结构影响研究. 安全与环境学报. 2025(01): 108-120 .
    2. 李奇,吴勇,乔磊. 深部中阶煤孔结构的压汞—液氮联合表征及孔隙分形特征. 石油实验地质. 2025(01): 130-142 .
    3. 武剑,李伟. 超临界CO_2-H_2O流体对煤渗流孔隙结构的影响. 煤矿安全. 2022(03): 9-15 .
    4. 孟庆峰,李琰,张爱然,谷超. 超临界CO_2-H_2O对无烟煤孔裂隙结构的影响. 山西煤炭. 2021(03): 70-74 .
    5. 文虎,刘名阳,樊世星,魏高明,刘荫,郝建池,程小蛟,王虎. 液态CO_2溶浸煤体孔裂隙演化特征的实验研究. 西安科技大学学报. 2020(06): 935-944 .
    6. 吴迪,刘雪莹,孙可明,辛利伟,苗丰. 热力耦合条件下超临界CO_2驱替煤层CH_4实验. 煤田地质与勘探. 2019(03): 85-90 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (78) PDF downloads (20) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return