HAN Wenlong, WANG Yanbin, LIU Du, CHANG Hong, DING Tao. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016
Citation: HAN Wenlong, WANG Yanbin, LIU Du, CHANG Hong, DING Tao. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016

The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells

Funds: 

National Science and Technology Major Project(2017ZX05064-005)

More Information
  • Received Date: May 24, 2018
  • Published Date: June 24, 2019
  • The matching of coalbed methane(CBM) production curve type and geological conditions directly affects the gas production. Based on dividing gas production curves types of vertical CBM wells in the southern block of Shizhuang in Qinshui basin over 4 years, the characteristics of gas production curve were analyzed. The matching of gas production curve with reservoir parameters was further analyzed. The paper discovered and divided the gas production curve into four types:type of fast rising of single peak, type of stable rising of single peak, bimodal type of being low later and bimodal type of being high later. The original permeability, dynamic condition, and fracturing effect control the characteristics of gas production curve. The reservoir parameters of the type of fast rising of single peak has high gas content(>12 m3/d), high permeability(>0.1×10-3 μm2), high specific value of critical desorption pressure and reservoir pressure(>0.4). This kind of curve is easy to cause sharp drop of gas production in the peak period. The type of stable rising of single peak is applicable in a wide range of reservoir conditions. Gas production of bimodal type of being low of is usually lower than other types. The gas production curve is poorly matched to the reservoir characteristics. The bimodal type of being high later is suitable for wells with better fracturing effect and have lower requirements for reservoir parameters. Gas production growth rate of the back peak determines the gas production effect. On the basis of above analysis, the reservoir is divided into seven types, which has important guiding significance for the implementation of the "one well and one scheme" drainage system in the study area and its adjacent blocks.
  • [1]
    倪小明,王延斌,张崇崇,等. 煤层气产出过程渗透率变化与排采控制[M]. 北京:化学工业出版社,2015.
    [2]
    汪吉林,秦勇,傅雪海. 关于煤层气排采动态变化机制的新认识[J]. 高校地质学报,2012,18(3):583-588.

    WANG Jilin,QIN Yong,FU Xuehai. New insight into the methanism for dynamic coalbed methane drainage[J]. Geological Journal of China Universities,2012,18(3):583-588.
    [3]
    刘世奇,赵贤正,桑树勋,等. 煤层气井排采液面-套压协同管控:以沁水盆地樊庄区块为例[J]. 石油学报,2015,36(增刊1):97-108.

    LIU Shiqi,ZHAO Xianzheng,SANG Shuxun,et al. Co-operative control of working fluid level and casing pressure for coalbed methane production:A case study of Fanzhuang block in Qinshui basin[J]. Acta Petrolei Sinica,2015,36(S1):97-108.
    [4]
    陈金刚,秦勇,傅雪海. 高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J]. 中国矿业大学学报,2006,35(1):49-53.

    CHEN Jingang,QIN Yong,FU Xuehai. Numerical simulation on dynamic variation of the permeability of high rank coal reservoirs during gas recovery[J]. Journal of China University of Mining & Technology,2006,35(1):49-53.
    [5]
    李国富,侯泉林. 沁水盆地南部煤层气井排采动态过程与差异性[J]. 煤炭学报,2012,37(5):798-803.

    LI Guofu,HOU Quanlin. Dynamic process and difference of coalbed methane wells production in southern Qinshui basin[J]. Journal of China Coal Society,2012,37(5):798-803.
    [6]
    杨秀春,李明宅. 煤层气排采动态参数及其相互关系[J]. 煤田地质与勘探,2008,36(2):19-23.

    YANG Xiuchun,LI Mingzhai. Dynamic parameters of CBM well drainage and relationship among them[J]. Coal Geology & Exploration,2008,36(2):19-23.
    [7]
    邵先杰,董新秀,汤达祯,等. 煤层气开发过程中渗透率动态变化规律及对产能的影响[J]. 煤炭学报,2014,39(增刊1):146-151.

    SHAO Xianjie,DONG Xinxiu,TANG Dazhen,et al. Permeability dynamic change law and its effect on productivity during coalbed methane development[J]. Journal of China Coal Society,2014,39(S1):146-151.
    [8]
    倪小明,苏现波,魏庆喜,等. 煤储层渗透率与煤层气垂直井排采曲线关系[J]. 煤炭学报,2009,34(9):1194-1198.

    NI Xiaoming,SU Xianbo,WEI Qingxi,et al. The rela-tionship between the permeability of coalbed and production curve about coalbed methane vertical wells[J]. Journal of China Coal Society,2009,34(9):1194-1198.
    [9]
    杨国桥,唐书恒,李忠城,等. 柿庄南区块煤层气高产井排采制度分析[J]. 煤炭科学技术,2016,44(8):176-181.

    YANG Guoqiao,TANG Shuheng,LI Zhongcheng,et al. Analysis on drainage system of coalbed methane high production well in south block of Shizhuang[J]. Coal Science and Technology,2016,44(8):176-181.
    [10]
    尹中山,肖建新,汪威. 四川古蔺DCMT-3井排采曲线特征及开发前景分析[J]. 中国煤炭地质,2012,24(1):13-16.

    YIN Zhongshan,XIAO Jianxin,WANG Wei. Analysis of DCMT-3 well drainage curve characteristics and exploitation prospect,Gulin,Sichuan[J]. Coal Geology of China,2012,24(1):13-16.
    [11]
    胡秋嘉,李梦溪,王立龙,等. 樊庄区块煤层气直井产气曲线特征分析[J]. 中国煤层气,2012,9(6):3-7.

    HU Qiujia,LI Mengxi,WANG Lilong,et al. Analysis on coalbed methane straight well gas yield curve characteristic of Fanzhuang block[J]. China Coalbed Methane,2012,9(6):3-7.
    [12]
    林柏泉,李庆钊,原德胜,等. 彬长矿区低煤阶煤层气井的排采特征与井型优化[J]. 煤炭学报,2015,40(1):135-141.

    LIN Baiquan,LI Qingzhao,YUAN Desheng,et al. CBM production character and surface well selection in Binchang low rank coal field[J]. Journal of China Coal Society,2015,40(1):135-141.
    [13]
    潘建旭,王延斌,倪小明,等. 资源条件与煤层气垂直井产能关系:以沁水盆地南部樊庄与潘庄区块为例[J]. 煤田地质与勘探,2011,39(4):24-27.

    PAN Jianxu,WANG Yanbin,NI Xiaoming,et al. The relationship between resource conditions and CBM productivity of vertical wells:A case of Fanzhuang and Panzhuang blocks in southern Qinshui basin[J]. Coal Geology & Exploration,2011,39(4):24-27.
    [14]
    吴国代,郭东鑫,程礼军. 松藻矿区多煤层合采储层压降特征及启示[J]. 煤田地质与勘探,2018,46(5):123-128.

    WU Guodai,GUO Dongxin,CHENG Lijun,et al. Characteristics and revelation of pressure drop of reservoir during combined CBM production of multi-coal seams in Songzao mining area[J]. Coal Geology & Exploration,2018,46(5):123-128.
    [15]
    刘会虎,桑树勋,冯清凌,等. 沁水盆地南部煤层气井排采储层应力敏感研究[J]. 煤炭学报,2014,39(9):1873-1878.

    LIU Huihu,SANG Shuxun,FENG Qingling,et al. Study on stress sen-sitivity of coal reservoir during drainage of coalbed methane well in southern Qinshui basin[J]. Journal of China Coal Society,2014,39(9):1873-1878.
    [16]
    郭春华,周文,孙晗森,等. 考虑应力敏感性的煤层气井排采特征[J]. 煤田地质与勘探,2011,39(5):27-30.

    GUO Chunhua,ZHOU Wen,SUN Hansen,et al. The relationship between stress sensitivity and production of coalbed methane wells[J]. Coal Geology & Exploration,2011,39(5):27-30.
    [17]
    陈云涛. 煤层气排采曲线特征及其影响因素分析[J]. 中国煤层气,2016,13(4):26-29.

    CHEN Yuntao. CMB emission and exploitation curve features and analysis[J]. China Coalbed Methane,2016,13(4):26-29.
    [18]
    陶树,汤达祯,许浩,等. 沁南煤层气井产能影响因素分析及开发建议[J]. 煤炭学报,2011,36(2):194-198.

    TAO Shu,TANG Dazhen,XU Hao,et al. Analysis on in-fluence factors of coalbed methane wells productivity and development proposals in southern Qinshui basin[J]. Journal of China Coal Society,2011,36(2):194-198.
    [19]
    王兴隆,赵益忠,吴桐. 沁南高煤阶煤层气井排采机理与生产特征[J]. 煤田地质与勘探,2009,37(5):19-22.

    WANG Xinglong,ZHAO Yizhong,WU Tong. Study on pressure drop transmission law of coalbed methane drainage reservoir stratum[J]. Coal Geology & Exploration,2009,37(5):19-22.
    [20]
    刘世奇,桑树勋,李梦溪,等. 沁水盆地南部煤层气井网排采压降漏斗的控制因素[J]. 中国矿业大学学报,2012,41(6):943-950.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Control factor of coalbed methane well depressurization cone under drainage well network in southern Qinshui basin[J]. Journal of China University of Mining & Technology,2012,41(6):943-950.
  • Related Articles

    [1]ZHANG Cong, LI Mengxi, FENG Shuren, HU Qiujia, QIAO Maopo, WU Dingquan, YU Jiasheng, LI Kexin. Reservoir properties and gas production difference between No.15 coal and No.3 coal in Zhengzhuang Block, southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 145-153. DOI: 10.12363/issn.1001-1986.21.12.0816
    [2]WU Jie, TIAN Yongdong. Application of high energy electric pulse technology in coalbed methane wells in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 206-211,218. DOI: 10.3969/j.issn.1001-1986.2018.05.032
    [3]HU Zhazha, HUANG Wenhui, LIU Suping, ZHANG Qian, XU Qilu, FENG Xiaolong. Study on the influencing factors of the microfracture development in coal reservoir in southern Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 63-70. DOI: 10.3969/j.issn.1001-1986.2016.05.012
    [4]YAN Lifei, SHEN Ruichen, YUAN Guangjie, XIA Yan, LIU Zhaoli, WANG Wu. Application of fuzzy-ball drilling fluid in alternating lithology well of Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 137-140. DOI: 10.3969/j.issn.1001-1986.2016.01.027
    [5]LIU Jiaonan, ZHU Yanming, LIU Yu, TANG Xin. Characteristics of the mud shale reservoirs of transitional facies: with Qinshui basin as an example[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(6): 23-28. DOI: 10.3969/j.issn.1001-1986.2015.06.004
    [6]WANG Ying, ZHANG Qinglong, ZHU Wenbin, WANG Liangshu, XIE Guoai, ZOU Xu. Mesozoic structural deformation and tectonic stress field characteristics in the north of Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(1): 8-12,18. DOI: 10.3969/j.issn.1001-1986.2014.01.002
    [7]XU Gang, LI Shugang, DING Yang. Classification of coalbed methane enrichment units in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 22-26. DOI: 10.3969/j.issn.1001-1986.2013.06.006
    [8]ZHOU Feng. Experiment of influence of fractures on coal/rock acoustic velocity: with Carboniferous seams of Qinshui basin as example[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(2): 71-74. DOI: 10.3969/j.issn.1001-1986.2012.02.017
    [9]SHI Wei, SANG Shuxun, ZHOU Xiaozhi, HUANG Huazhou, LIU Huihu, XU Hongjie. Analysis of the fracturing slit's delivery capacity in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(3): 19-23,28. DOI: 10.3969/j.issn.1001-1986.2011.03.004
    [10]XU Zhen-yong, WANG Yan-bin, CHEN De-yuan, ZHOU Guo-wen, WANG Chang-sheng. Sequence stratigraphy & lithofacies palaeogeography in Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 5-7,11.
  • Cited by

    Periodical cited type(4)

    1. 许光泉,张海涛,周继生,李旭,汪敏华,刘满才. 华北煤田岩溶陷落柱及其突水研究综述及展望. 中国岩溶. 2022(02): 259-275 .
    2. 乔会,黄鹤飞,王铁松. 蚂蚁追踪技术在煤层上部裂隙预测中的应用. 陕西煤炭. 2022(05): 211-214 .
    3. 潘冀川,陈新宏,李洪明. 新集矿区小断层识别方法研究. 煤炭与化工. 2020(07): 75-78 .
    4. 陆自清. 基于边界元方法的次级断裂信息挖掘试验研究. 煤田地质与勘探. 2020(05): 211-217 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (141) PDF downloads (23) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return