HAN Wenlong, WANG Yanbin, LIU Du, CHANG Hong, DING Tao. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016
Citation: HAN Wenlong, WANG Yanbin, LIU Du, CHANG Hong, DING Tao. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 97-104. DOI: 10.3969/j.issn.1001-1986.2019.03.016

The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells

Funds: 

National Science and Technology Major Project(2017ZX05064-005)

More Information
  • Received Date: May 24, 2018
  • Published Date: June 24, 2019
  • The matching of coalbed methane(CBM) production curve type and geological conditions directly affects the gas production. Based on dividing gas production curves types of vertical CBM wells in the southern block of Shizhuang in Qinshui basin over 4 years, the characteristics of gas production curve were analyzed. The matching of gas production curve with reservoir parameters was further analyzed. The paper discovered and divided the gas production curve into four types:type of fast rising of single peak, type of stable rising of single peak, bimodal type of being low later and bimodal type of being high later. The original permeability, dynamic condition, and fracturing effect control the characteristics of gas production curve. The reservoir parameters of the type of fast rising of single peak has high gas content(>12 m3/d), high permeability(>0.1×10-3 μm2), high specific value of critical desorption pressure and reservoir pressure(>0.4). This kind of curve is easy to cause sharp drop of gas production in the peak period. The type of stable rising of single peak is applicable in a wide range of reservoir conditions. Gas production of bimodal type of being low of is usually lower than other types. The gas production curve is poorly matched to the reservoir characteristics. The bimodal type of being high later is suitable for wells with better fracturing effect and have lower requirements for reservoir parameters. Gas production growth rate of the back peak determines the gas production effect. On the basis of above analysis, the reservoir is divided into seven types, which has important guiding significance for the implementation of the "one well and one scheme" drainage system in the study area and its adjacent blocks.
  • [1]
    倪小明,王延斌,张崇崇,等. 煤层气产出过程渗透率变化与排采控制[M]. 北京:化学工业出版社,2015.
    [2]
    汪吉林,秦勇,傅雪海. 关于煤层气排采动态变化机制的新认识[J]. 高校地质学报,2012,18(3):583-588.

    WANG Jilin,QIN Yong,FU Xuehai. New insight into the methanism for dynamic coalbed methane drainage[J]. Geological Journal of China Universities,2012,18(3):583-588.
    [3]
    刘世奇,赵贤正,桑树勋,等. 煤层气井排采液面-套压协同管控:以沁水盆地樊庄区块为例[J]. 石油学报,2015,36(增刊1):97-108.

    LIU Shiqi,ZHAO Xianzheng,SANG Shuxun,et al. Co-operative control of working fluid level and casing pressure for coalbed methane production:A case study of Fanzhuang block in Qinshui basin[J]. Acta Petrolei Sinica,2015,36(S1):97-108.
    [4]
    陈金刚,秦勇,傅雪海. 高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J]. 中国矿业大学学报,2006,35(1):49-53.

    CHEN Jingang,QIN Yong,FU Xuehai. Numerical simulation on dynamic variation of the permeability of high rank coal reservoirs during gas recovery[J]. Journal of China University of Mining & Technology,2006,35(1):49-53.
    [5]
    李国富,侯泉林. 沁水盆地南部煤层气井排采动态过程与差异性[J]. 煤炭学报,2012,37(5):798-803.

    LI Guofu,HOU Quanlin. Dynamic process and difference of coalbed methane wells production in southern Qinshui basin[J]. Journal of China Coal Society,2012,37(5):798-803.
    [6]
    杨秀春,李明宅. 煤层气排采动态参数及其相互关系[J]. 煤田地质与勘探,2008,36(2):19-23.

    YANG Xiuchun,LI Mingzhai. Dynamic parameters of CBM well drainage and relationship among them[J]. Coal Geology & Exploration,2008,36(2):19-23.
    [7]
    邵先杰,董新秀,汤达祯,等. 煤层气开发过程中渗透率动态变化规律及对产能的影响[J]. 煤炭学报,2014,39(增刊1):146-151.

    SHAO Xianjie,DONG Xinxiu,TANG Dazhen,et al. Permeability dynamic change law and its effect on productivity during coalbed methane development[J]. Journal of China Coal Society,2014,39(S1):146-151.
    [8]
    倪小明,苏现波,魏庆喜,等. 煤储层渗透率与煤层气垂直井排采曲线关系[J]. 煤炭学报,2009,34(9):1194-1198.

    NI Xiaoming,SU Xianbo,WEI Qingxi,et al. The rela-tionship between the permeability of coalbed and production curve about coalbed methane vertical wells[J]. Journal of China Coal Society,2009,34(9):1194-1198.
    [9]
    杨国桥,唐书恒,李忠城,等. 柿庄南区块煤层气高产井排采制度分析[J]. 煤炭科学技术,2016,44(8):176-181.

    YANG Guoqiao,TANG Shuheng,LI Zhongcheng,et al. Analysis on drainage system of coalbed methane high production well in south block of Shizhuang[J]. Coal Science and Technology,2016,44(8):176-181.
    [10]
    尹中山,肖建新,汪威. 四川古蔺DCMT-3井排采曲线特征及开发前景分析[J]. 中国煤炭地质,2012,24(1):13-16.

    YIN Zhongshan,XIAO Jianxin,WANG Wei. Analysis of DCMT-3 well drainage curve characteristics and exploitation prospect,Gulin,Sichuan[J]. Coal Geology of China,2012,24(1):13-16.
    [11]
    胡秋嘉,李梦溪,王立龙,等. 樊庄区块煤层气直井产气曲线特征分析[J]. 中国煤层气,2012,9(6):3-7.

    HU Qiujia,LI Mengxi,WANG Lilong,et al. Analysis on coalbed methane straight well gas yield curve characteristic of Fanzhuang block[J]. China Coalbed Methane,2012,9(6):3-7.
    [12]
    林柏泉,李庆钊,原德胜,等. 彬长矿区低煤阶煤层气井的排采特征与井型优化[J]. 煤炭学报,2015,40(1):135-141.

    LIN Baiquan,LI Qingzhao,YUAN Desheng,et al. CBM production character and surface well selection in Binchang low rank coal field[J]. Journal of China Coal Society,2015,40(1):135-141.
    [13]
    潘建旭,王延斌,倪小明,等. 资源条件与煤层气垂直井产能关系:以沁水盆地南部樊庄与潘庄区块为例[J]. 煤田地质与勘探,2011,39(4):24-27.

    PAN Jianxu,WANG Yanbin,NI Xiaoming,et al. The relationship between resource conditions and CBM productivity of vertical wells:A case of Fanzhuang and Panzhuang blocks in southern Qinshui basin[J]. Coal Geology & Exploration,2011,39(4):24-27.
    [14]
    吴国代,郭东鑫,程礼军. 松藻矿区多煤层合采储层压降特征及启示[J]. 煤田地质与勘探,2018,46(5):123-128.

    WU Guodai,GUO Dongxin,CHENG Lijun,et al. Characteristics and revelation of pressure drop of reservoir during combined CBM production of multi-coal seams in Songzao mining area[J]. Coal Geology & Exploration,2018,46(5):123-128.
    [15]
    刘会虎,桑树勋,冯清凌,等. 沁水盆地南部煤层气井排采储层应力敏感研究[J]. 煤炭学报,2014,39(9):1873-1878.

    LIU Huihu,SANG Shuxun,FENG Qingling,et al. Study on stress sen-sitivity of coal reservoir during drainage of coalbed methane well in southern Qinshui basin[J]. Journal of China Coal Society,2014,39(9):1873-1878.
    [16]
    郭春华,周文,孙晗森,等. 考虑应力敏感性的煤层气井排采特征[J]. 煤田地质与勘探,2011,39(5):27-30.

    GUO Chunhua,ZHOU Wen,SUN Hansen,et al. The relationship between stress sensitivity and production of coalbed methane wells[J]. Coal Geology & Exploration,2011,39(5):27-30.
    [17]
    陈云涛. 煤层气排采曲线特征及其影响因素分析[J]. 中国煤层气,2016,13(4):26-29.

    CHEN Yuntao. CMB emission and exploitation curve features and analysis[J]. China Coalbed Methane,2016,13(4):26-29.
    [18]
    陶树,汤达祯,许浩,等. 沁南煤层气井产能影响因素分析及开发建议[J]. 煤炭学报,2011,36(2):194-198.

    TAO Shu,TANG Dazhen,XU Hao,et al. Analysis on in-fluence factors of coalbed methane wells productivity and development proposals in southern Qinshui basin[J]. Journal of China Coal Society,2011,36(2):194-198.
    [19]
    王兴隆,赵益忠,吴桐. 沁南高煤阶煤层气井排采机理与生产特征[J]. 煤田地质与勘探,2009,37(5):19-22.

    WANG Xinglong,ZHAO Yizhong,WU Tong. Study on pressure drop transmission law of coalbed methane drainage reservoir stratum[J]. Coal Geology & Exploration,2009,37(5):19-22.
    [20]
    刘世奇,桑树勋,李梦溪,等. 沁水盆地南部煤层气井网排采压降漏斗的控制因素[J]. 中国矿业大学学报,2012,41(6):943-950.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Control factor of coalbed methane well depressurization cone under drainage well network in southern Qinshui basin[J]. Journal of China University of Mining & Technology,2012,41(6):943-950.
  • Related Articles

    [1]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. A method for intelligent information extraction of coal fractures based on µCT and deep learning[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 55-66. DOI: 10.12363/issn.1001-1986.24.09.0609
    [2]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. Intelligent coal fracture extraction method using μCT and deep learning[J]. COAL GEOLOGY & EXPLORATION.
    [3]CHEN Dongdong, WANG Jianli, JIA Bingyi, XI Jie. High-efficiency regional gas drainage model after hydraulic fracturing of comb-shaped long boreholes in the roof of broken soft and low permeability coal seam[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(8): 29-36. DOI: 10.12363/issn.1001-1986.22.03.0195
    [4]GUO Chaoqi, ZHAO Jizhan, LI Xiaojian, ZHANG Jingfei, WU Shengli, CHEN Dongdong, HUANG Xingli, LI Baojun. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 103-108,115. DOI: 10.3969/j.issn.1001-1986.2020.06.014
    [5]ZHAO Rui, FAN Tao, LI Yuteng, WANG Jikuang, MA Yuan, WANG Bingchun, LIU Lei, FANG Zhe. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 41-45. DOI: 10.3969/j.issn.1001-1986.2020.04.006
    [6]WANG Zhirong, YANG Jie, CHEN Lingxia, GUO Zhiwei. Productivity prediction of hypotonic CBM test well in Jiaozuo mining area under hydraulic fracturing[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 70-76. DOI: 10.3969/j.issn.1001-1986.2019.03.012
    [7]YAN Zhiming. Hydraulic fracturing technology for permeability improvement through underground long borehole along coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 45-48. DOI: 10.3969/j.issn.1001-1986.2017.03.008
    [8]LI Xiangchen, CHEN Defei, KANG Yili, MENG Xiangjuan. Characterization of pores and fractures of coal based on CT scan[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 58-62,70. DOI: 10.3969/j.issn.1001-1986.2016.05.011
    [9]ZHANG Shuangbin, SU Xianbo, GUO Hongyu. Experimental optimization of proppant for hydraulic fracturing in coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 51-55. DOI: 10.3969/j.issn.1001-1986.2016.01.010
    [10]ZHANG Hong, XU Ju-zhen, YANG Hong-bin, WANG Rui-xia, HE Zi-jiang. Evaluation and study on coal reservoir fracture system in Heshun area[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(4): 27-29.
  • Cited by

    Periodical cited type(9)

    1. 齐治虎,姬玉平,王迪,徐影,李亚辉,刘文强,刘均荣. 填料水泥导热性能实验及对U型地热井取热影响的数值模拟研究. 能源与环保. 2024(02): 70-76 .
    2. 韩元红,贾国圣,张廷会,张育平,薛宇泽,金立文. 地热浅埋孔回填材料中砂粒结构对导热系数的影响. 科学技术与工程. 2023(15): 6599-6606 .
    3. 张丰琰,李立鑫,代晓光,董子良,韩丽丽,王博. 地热井保温水泥导热系数影响因素研究. 太阳能学报. 2023(09): 493-502 .
    4. 杜渊博,葛勇. 水泥石导热系数的计算模型. 硅酸盐学报. 2022(02): 466-472 .
    5. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 .
    6. 陶宇龙,赵凯. 试论分级固井技术在“取热不取水”地热井施工中的应用. 工程建设与设计. 2022(07): 180-182 .
    7. 雷燕子,杨永健,汪启龙,田烨. 温度对高导热固井材料性能及结构的影响研究. 山西建筑. 2022(16): 100-103 .
    8. 贾海梁,朱子贤,周阳,孙强. 砂-重晶石粉填料导热性能与传热机制研究. 煤田地质与勘探. 2022(11): 162-173 . 本站查看
    9. 张丰琰,李立鑫. 地热井固井水泥石传热性能研究现状及展望. 钻探工程. 2021(12): 54-64 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (139) PDF downloads (23) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return