YANG Yi, DENG Xiaohong, WANG Liyan, WANG Xingchun, ZHI Qingquan, ZHANG Jie, WU Junjie, WANG Lei, FU Shengzhong. Typical characteristics analysis and anomalies interpretation of borehole TEM: Taking Xinjiang Baishiquan Cu-Ni ore zk506 borehole as an example[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 186-190,196. DOI: 10.3969/j.issn.1001-1986.2018.04.030
Citation: YANG Yi, DENG Xiaohong, WANG Liyan, WANG Xingchun, ZHI Qingquan, ZHANG Jie, WU Junjie, WANG Lei, FU Shengzhong. Typical characteristics analysis and anomalies interpretation of borehole TEM: Taking Xinjiang Baishiquan Cu-Ni ore zk506 borehole as an example[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 186-190,196. DOI: 10.3969/j.issn.1001-1986.2018.04.030

Typical characteristics analysis and anomalies interpretation of borehole TEM: Taking Xinjiang Baishiquan Cu-Ni ore zk506 borehole as an example

Funds: 

The Basic Scientific Research Project of Geophysical and Geochemical Exploration Institute of Chinese Academy of Geological Sciences(AS2015J08,AS2017J07)

More Information
  • Received Date: August 09, 2017
  • Published Date: August 24, 2018
  • Borehole TEM method is an effective method for the deep buried conductive sulfide ore, this research took three component transient electromagnetic measurement in borehole zk506 in Xinjiang Baishiquan Cu-Ni ore as an example, combined with the known information of the borehole, through the analysis of features of the curves, marked off three anomalies from top to bottom and speculated that the second was the main anomaly, determined that its azimuth was southeast, and judged that the anomaly extended far in the southeast direction according to the high amplitude of response of component z in the later period. Finally, comparison of the geological logging of borehole zk506 and later drilled boreholes zk507 and zk508 proved the inference and the interpretation of borehole TEM, revised previous geological knowledge based on the single record of the borehole zk506. The validity and the importance of borehole transient electromagnetic method in the exploration of sulfide deposits with good conductivity are testified.
  • [1]
    ANDREW J M. Applications of down-hole sirotem surveys in the Agnew Nickel Belt,WA[J]. Exploration Geophysics,1987, 18(3):295-303.
    [2]
    BISHOP J R,LEWIS R J G,MACNAE J C. Down-hole electromagnetic surveys at Renison Bell,Tasmania[J]. Exploration Geophysics,1987,18(3):265-277.
    [3]
    IRVINE R J. Drillhole TEM surveys at Thalanga,Queensland[J]. Exploration Geophysics,1987,18(3):285-294.
    [4]
    LANE R L. The down-hole EM response of an intersected massive sulphide deposit,south Australia[J]. Exploration Geophysics,1987,18(3):255-264
    [5]
    HUGHES N A,RAVENHURST W R. Three component DHEM surveying at Balcooma[J]. Exploration Geophysics, 1996, 27(2/3):77-89.
    [6]
    JULIE E,ANDREW W. An application of reverse coupling to increase signal strength beneath conductive sediments-Miitel mine,Kambalda,WA[J]. Exploration Geophysics,1998, 29(3/4):355-360.
    [7]
    崔霖沛,吴其斌,熊寿庆,等. 寻找以铜为主的隐伏矿床的物探方法[R]. 地质矿产信息研究成果(三十),1994.
    [8]
    胡平,石中英. 地-井TEM工作方法及解释技术研究成果报告[R]. 地质矿产部"八五"科技攻关项目研究成果报告,1995.
    [9]
    国土资源部信息中心. 国外重要成矿区带典型找矿案例和勘查技术应用[M]. 北京:地质出版社,1999.
    [10]
    施俊法,姚华军,李友枝,等. 信息找矿战略与勘查百例[M]. 北京:地质出版社,2005.
    [11]
    张杰,邓晓红,郭鑫,等. 地-井TEM在危机矿山深部找矿中的应用实例[J]. 物探与化探,2013,37(1):30-34.

    ZHANG Jie,DENG Xiaohong,GUO Xin,et al. Typical cases of applying borehole TEM to deep prospecting in crisis mines[J]. Geophysical and Geochemical Exploration,2013,37(1):30-34.
    [12]
    蒋慎君,陈卫. 井中脉冲瞬变电磁法在苏皖地区寻找深部隐伏金属矿床中的应用效果[J]. 江苏地质, 1987(2):46-52.

    JIANG Shenjun,CHEN Wei. The application of transient electromagnetic for deep concealed metallic deposits in the region of Jiangsu and Anhui[J]. Jiangsu Geology,1987(2):46-52.
    [13]
    蒋慎君,陈卫. 金属矿区井中脉冲瞬变电磁法的应用效果[J]. 地质与勘探,1988,24(1):40-45.

    JIANG Shenjun,CHEN Wei. Application effect of borehole pulse transient electromagnetic method in the metal mining area[J]. Geology and Exploration,1988,24(1):40-45.
    [14]
    张兆京,陈卫. 井中脉冲瞬变电磁法在栖霞山矿区初见成效[J]. 矿床与地质,1988,2(4):71-74.

    ZHANG Zhaojing,CHEN Wei. Effect of borehole transient electromagnetic method in Qixia mountain mining area[J]. 1988, 2(4):71-74.
    [15]
    孟庆鑫,潘和平,牛峥. 大地介质影响下地-井瞬变电磁的正演模拟分析[J]. 中国矿业大学学报, 2014, 43(6):1113-1119.

    MENG Qingxin,PAN Heping,NIU Zheng. Forward simulation of surface-borehole TEM in geological medium effect[J]. Journal of China University of Mining & Technology,2014,43(6):1113-1119.
    [16]
    李建慧,刘树才,焦险峰,等. 地-井瞬变电磁法三维正演研究[J]. 石油地球物理勘探,2015,50(3):556-564.

    LI Jianhui,LIU Shucai,JIAO Xianfeng,et al. Three-dimensional forward modeling for borehole transient electromagnetic model[J]. Geophysical Prospecting,2015,50(3):556-564.
    [17]
    许新刚,徐正玉. 地-井瞬变电磁响应三维时域有限差分模拟[J]. 物探与化探,2017,41(3):496-504.

    XU Xingang,XU Zhengyu. Three-dimentional finite difference time domain simulation for down-hole transient electromagnetic method[J]. Geophysical and Geochemical Exploration,2017, 41(3):496-504.
    [18]
    徐正玉,杨海燕,邓居智,等. 基于异常场的地-井瞬变电磁法正演研究[J]. 物探与化探,2015,39(6):1176-1182.

    XU Zhengyu,YANG Haiyan,DENG Juzhi,et al. Research forward simulation of down-hole TEM based on abnormal field[J]. Geophysical and Geochemical Exploration,2015,39(6):1176-1182.
    [19]
    蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京:地质出版社,1998.
    [20]
    牛之琏. 时间域电磁法原理[M]. 长沙:中南大学出版社, 2007.
  • Related Articles

    [1]YANG Bin, WANG Hualin, WU Hongbin, GE Fugang, ZOU Hao, SU Sili. Application of high-precision LiDAR technology in research on active fault-induced offset geomorphic features-A case study of the Juxian-Tancheng segment of the Yishu fault zone[J]. COAL GEOLOGY & EXPLORATION.
    [2]YANG Bin, WANG Hualin, WU Hongbin, GE Fugang, ZOU Hao, SU Sili. Application of high-precision LiDAR technology in research on active fault-induced offset geomorphic features - A case study of the Juxian-Tancheng segment of the Yishu fault zone[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(12): 57-68. DOI: 10.12363/issn.1001-1986.23.11.0761
    [3]SA Zhanyou, WU Jingbo, YANG Yongliang, ZHANG Xin, LU Shouqing, LIU Jie, WANG Hao. CO2-ECBM simulation study considering Klinkenberg factor state[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(3): 37-45. DOI: 10.12363/issn.1001-1986.22.09.0713
    [4]SUN Tao, SONG Shijie, CHANG Qing, WANG Chenchen, ZHANG Yanjie, PENG Ruisi, WANG Yi. Spatial variation characteristics of soil heavy metal speciation and bioavailability in coal gangue accumulation area—Taking Fengfeng mining area as an example[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(10): 85-95. DOI: 10.12363/issn.1001-1986.22.03.0159
    [5]DAI Qianwei, CUI Yongsheng, HAN Xingjin, LEI Yi, LI Jiepeng, ZHU Zelong. Validity analysis of flow field method in detecting seepage vector distribution of earth-rock dam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 270-276. DOI: 10.3969/j.issn.1001-1986.2021.01.030
    [6]LIU Shilei, ZHANG Ying, YUE Jianhua. Application of Simulink in transient process analysis of transient electromagnetic field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 209-215. DOI: 10.3969/j.issn.1001-1986.2020.02.031
    [7]SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 1-9. DOI: 10.3969/j.issn.1001-1986.2018.05.001
    [8]YE Hongxing. The interpretation of the gob based on the analysis of seismic attribute in Hongliulin coal mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 87-91. DOI: 10.3969/j.issn.1001-1986.2014.03.020
    [9]ZHANG Xudong, WEN Guojun. Variable design of drilling rig's parts based on pro-development of SolidWorks[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 89-92. DOI: 10.3969/j.issn.1001-1986.2012.06.021
    [10]SHI Binquan, KANG Wuchen. Application of E-link electromagnetic measurement while drilling system in drilling coal bed methane well[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 68-70,75. DOI: 10.3969/j.issn.1001-1986.2010.02.017
  • Cited by

    Periodical cited type(9)

    1. 焦安军,田世祥,林华颖,许石青. 贵州三甲煤矿突出煤体结构参数及孔隙特征研究. 煤矿安全. 2023(02): 1-7 .
    2. 石钰,刘洋,薛俊华,李树刚,张超. 基于LAMMPS的煤纳米孔隙中甲烷吸附/解吸和流动规律研究. 煤田地质与勘探. 2023(04): 37-45 . 本站查看
    3. 王龙伟. 基于低温液氮吸附法的长平井田3号煤孔隙结构特征研究. 山西煤炭. 2022(03): 65-73+87 .
    4. 牟全斌. 单一低渗煤层井下增透技术研究现状与展望. 能源与环保. 2022(09): 281-287+300 .
    5. 陈建,贾秉义,董瑞刚,孙四清,赵继展. 煤矿井下水力压裂加骨料增透瓦斯抽采技术应用. 煤炭工程. 2021(02): 90-94 .
    6. 贾秉义,陈冬冬,吴杰,孙四清,王建利,赵继展,张杰. 煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践. 煤田地质与勘探. 2021(02): 70-76 . 本站查看
    7. 陈月霞,褚廷湘,陈鹏,汤杨. 瓦斯抽采钻孔间距优化三维数值模拟量化研究. 煤田地质与勘探. 2021(03): 78-84+94 . 本站查看
    8. 胡秋嘉,刘世奇,闫玲,王鹤,方辉煌,张庆,毛崇昊,贾慧敏. 樊庄-郑庄区块无烟煤储层气水赋存-运移-产出路径的研究. 煤矿安全. 2020(10): 218-222 .
    9. 刘大锰,刘正帅,蔡益栋. 煤层气成藏机理及形成地质条件研究进展. 煤炭科学技术. 2020(10): 1-16 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (81) PDF downloads (7) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return