ZHANG Jifeng, HUANG Chaofeng, ZHOU Jianmei. Resolution analysis of several types of dipole source detecting seabed thin layer of high resistivity in marine controllable source electromagnetic method[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 139-144. DOI: 10.3969/j.issn.1001-1986.2018.03.023
Citation: ZHANG Jifeng, HUANG Chaofeng, ZHOU Jianmei. Resolution analysis of several types of dipole source detecting seabed thin layer of high resistivity in marine controllable source electromagnetic method[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 139-144. DOI: 10.3969/j.issn.1001-1986.2018.03.023

Resolution analysis of several types of dipole source detecting seabed thin layer of high resistivity in marine controllable source electromagnetic method

Funds: 

National Key R & D Program of China(2017YFC0602202)

More Information
  • Received Date: November 02, 2017
  • Published Date: June 24, 2018
  • Aiming at several typical dipole source emission devices in marine controlled-source method, a high resistivity reservoir model of anisotropic formation is established, and a one-dimensional stratigraphic analysis method based on Green function is adopted. With the reciprocal nature of the electromagnetic field, the electromagnetic response generated by different dipole sources are calculated. The electromagnetic response characteristics of different dipole sources are analyzed, and the amplitude and phase normalization curves of each electromagnetic field are compared. The results show that the amplitude normalization curve of the vertical electric dipole source has the greatest response to the anomaly, and the resolution of the high resistive layer is higher than that of the vertical magnetic dipole source. The axial observation mode of the horizontal galvanic source and the equatorial observation mode of the horizontal magnetic dipole source have good resolution. In this two modes, the measured electric field parallel to the survey line and the magnetic field perpendicular to the survey line have the best resolution, and there is an optimal transmitter-receiver distance, and the phase also has the same variation.
  • [1]
    COX C S. On the electrical conductivity of the oceanic litho-sphere[J]. Physics of the Earth & Planetary Interiors,1981,25(3):196-201.
    [2]
    COX C S,CONSTABLE S C,CHAVE A D,et al. Con-trolled-source electromagnetic sounding of the oceanic lithosphere[J]. Nature,1986,320(6057):52-54.
    [3]
    CHAVE A D. On the theory of electromagnetic induction in the earth by ocean currents[J]. Journal of Geophysical Research Solid Earth,1983,88(B4):3531-3542.
    [4]
    KWON Y S,WANG J JH. Computation of Hertzian dipole radiation in stratified uniaxial anisotropic media[J]. Radio Science,1986,21(6),891-902.
    [5]
    XIONG Z H. Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth[J]. Geophysics,1989,54(12):1643-1646.
    [6]
    EVERETT M E,CONSTABLE S. Electric dipole fields over an anisotropic seafloor:Theory and application to the structure of 40 Ma pacific ocean lithosphere[J]. Geophysical Journal of the Royal Astronomical society,1999,136(1):41-56.
    [7]
    LØSETH L O,URSIN B. Electromagnetic fields in planarly layered anisotropic media[J]. Geophysical Journal Interna-tional,2007,170(1):44-80.
    [8]
    HUNZIKER J,THORBECKE J,SLOB E. The electro-magnetic response in a layered vertical transverse isotropic medium:A new look at an old problem[J]. Geophysics,2015,80(1):F1-F18.
    [9]
    殷长春,贲放,刘云鹤,等.三维任意各向异性介质中海洋可控源电磁法正演研究[J].地球物理学报,2014,57(12):4110-4122.

    YIN Changchun,BEN Fang,LIU Yunhe,et al. MCSEM 3D modeling for arbitrarily anisotropic media[J]. Chinese Journal of Geophysics,2014,57(12):4110-4122.
    [10]
    韩波,胡祥云,黄一凡,等. 基于并行化直接解法的频率域可控源电磁三维正演[J]. 地球物理学报,2015,58(8):2812-2826.

    HAN Bo,HU Xiangyun,HUANG Yifan,et al. 3-D frequency-domain CSEM modeling using a parallel direct solver[J]. Chinese Journal of Geophysics,2015,58(8):2812-2826.
    [11]
    李勇,吴小平,林品荣,等. 电导率任意各向异性海洋可控源电磁三维矢量有限元数值模拟[J]. 地球物理学报,2017,60(5):1955-1978.

    LI Yong,WU Xiaoping,LIN Pinrong,et al. Three-dimensional modeling of marine controlled-source electromagnetism using the vector finite element method for arbitrary anisotropic media[J]. Chinese Journal of Geophysics,2017,60(5):1955-1978.
    [12]
    CHAVE A D. On the electromagnetic fields produced by marine frequency domain controlled sources[J]. Geophysical Journal International,2009,179(3):1429-1457.
    [13]
    刘云鹤,殷长春,翁爱华,等. 海洋可控源电磁法发射源姿态影响研究[J]. 地球物理学报,2012,55(8):2757-2768.

    LIU Yunhe,YIN Changchun,WENG Aihua,et al. Attitude effect for marine CSEM system[J]. Chinese Journal of Geophysics,2012,55(8):2757-2768.
    [14]
    董兴朋. 储层厚度和电阻率对海洋可控源电磁法的影响分析[J]. 科学技术与工程,2012,12(1):1671-1815.

    DONG Xingpeng. The analysis of reservoir thick-ness and electrical resistivity impact on controlled-source electromagnetic method[J]. Science Technology and Engineering,2012,12(1):1671-1815.
    [15]
    罗鸣,李予国. 一维电阻率各向异性对海洋可控源电磁响应的影响研究[J]. 地球物理学报,2015,58(8):2851-2861.

    LUO Ming,LI Yuguo. Effects of the electric anisotropy on marine controlled-source electro-magnetic responses[J]. Chinese Journal of Geophysics,2015,58(8):2851-2861.
    [16]
    翁爱华,刘云鹤,贾定宇,等. 基于电场不连续边界条件的层状介质电磁格林函数计算[J]. 吉林大学学报(地球科学版),2013,43(2):603-609.

    WENG Aihua,LIU Yunhe,JIA Dingyu,et al. Compute Green's function from discontinuity of tangential electrical fields inside source contained boundary[J]. Journal of Jilin University(Earth Science Edition),2013,43(2):603-609.
    [17]
    AVERSANA DELL P. Marine CSEM data interpretation:Pitfalls and possible solutions[J]. Leading Edge,2012,26(6):686-691.
    [18]
    HUNZIKER J,SLOB E,MULDER W. Effects of the airwave in time-domain marine controlled-source electromagnetics[J]. Geophysics,2011,76(4):F251-F261.
  • Related Articles

    [1]LI Shu, YANG Zeyuan, MA Xiongde, LIU Shengzu, FANG Chujing, ZHANG Aoqi. Influence of water yield property of Yan’an Formation aquifer on water yield of mines in southern Shenmu-Fugu mining area[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(6): 92-102. DOI: 10.12363/issn.1001-1986.22.11.0874
    [2]SHEN Xiaolong, LI Hao, WANG Wei, CHENG Zhouying. Q-p curve equation of geothermal well recharge test in the urban area of Mei County, western Guanzhong[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 165-174. DOI: 10.12363/issn.1001-1986.21.09.0512
    [3]LANG Yuquan, CHEN Tongjun, MA Li, MA Guodong. Water content prediction of roof sandstone using AVO technology[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 127-132. DOI: 10.3969/j.issn.1001-1986.2018.03.021
    [4]HUANG Huan, LIU Qisheng, JI Yadong. Prediction of mine water inflow through equal-dimension gray filling dynamic GM(1,1) model based on R/S analysis[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(6): 92-95,100. DOI: 10.3969/j.issn.1001-1986.2016.06.017
    [5]ZHANG Zhenyong. Application of TEM technique in detecting the water enrichment of strata[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(6): 109-113. DOI: 10.3969/j.issn.1001-1986.2015.06.023
    [6]LI Shuguang, CHENG Bingjie, YE Tairan, GAN Qigang, JIANG Lei, LIU Yun. Inverse Q filtering of post-stacking of converted PS-wave and its application[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 64-67. DOI: 10.3969/j.issn.1001-1986.2012.01.015
    [7]ZHOU Zhusheng, CHEN Youliang. Generalized S-transform with variable-factor and its time-frequency filtering[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(6): 63-66,71. DOI: 10.3969/j.issn.1001-1986.2011.06.015
    [8]MA Jianqing, LI Qingchun, WANG Meiding. Stratigraphic absorption-compensation based on the generalized S-transform[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 65-68. DOI: 10.3969/j.issn.1001-1986.2010.04.015
    [9]MAN Wei-shi, WANG Jin-guo, FU Jun-mei, SHEN-TU Jiang-min. The analysis of TEM signal in the S-domain[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(6): 68-71.
    [10]Ju Xinghua. THE NOISE ELIMINATION BY RADON TRANSFORM AND INVERSE Q FILTER IN SEISMIC DATA PROCESSING[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(4): 42-45.

Catalog

    Article Metrics

    Article views (81) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return