Citation: | QIAO Wei, CHENG Xianggang, DOU Linming, HE Hu, MENG Xiangsheng, REN Yangyang, XIAO Chong, CAI Jin. Sedimentary environments, mechanical properties, and rock burst risk identification of overburden in deep mines[J]. COAL GEOLOGY & EXPLORATION. |
[1] |
潘俊锋,刘少虹,高家明,等. 深部巷道冲击地压动静载分源防治理论与技术[J]. 煤炭学报,2020,45(5):1607-1613.
PAN Junfeng,LIU Shaohong,GAO Jiaming,et al. Prevention theory and technology of rock burst with distinguish dynamic and static load sources in deep mine roadway[J]. Journal of China Coal Society,2020,45(5):1607-1613.
|
[2] |
国务院安全生产委员会.关于进一步贯彻落实习近平总书记重要指示精神坚决防范遏制煤矿冲击地压事故的通知[EB/OL]. [2020-08-10]. https://www.gov.cn/zhengce/zhengceku/2020-08/14/content_5534763.htm
|
[3] |
LU Jun,ZHANG Dongming,HUANG Gun,et al. Effects of loading rate on the compound dynamic disaster in deep underground coal mine under true triaxial stress[J]. International Journal of Rock Mechanics and Mining Sciences,2020,134:104453.
|
[4] |
罗天敏,庞伟,刘旭东,等. 冲击地压多参量集成监测预警平台本地化建设研究[J]. 矿业安全与环保,2022,49(6):19-27.
LUO Tianmin,PANG Wei,LIU Xudong,et al. Local construction of multi-parameter integrated monitoring and early warning platform for rock burst[J]. Mining Safety & Environmental Protection,2022,49(6):19-27.
|
[5] |
王元杰. 基于地音监测技术的矿震演化规律及预警模型研究[J]. 中国煤炭,2024,50(3):53-60.
WANG Yuanjie. Study on the evolution law and early warning model of mine tremor based on ground sound monitoring technology[J]. China Coal,2024,50(3):53-60.
|
[6] |
贺虎,窦林名,巩思园,等. 冲击矿压的声发射监测技术研究[J]. 岩土力学,2011,32(4):1262-1268.
HE Hu,DOU Linming,GONG Siyuan,et al. Study of acoustic emission monitoring technology for rockburst[J]. Rock and Soil Mechanics,2011,32(4):1262-1268.
|
[7] |
杜才溢,张玉江,孟鑫,等. 基于钻屑量界限方程的冲击危险性判定新方法[J]. 矿业安全与环保,2024,51(1):86-91.
DU Caiyi,ZHANG Yujiang,MENG Xin,et al. A new method of rock burst hazard determination based on drilling cuttings limit equation[J]. Mining Safety & Environmental Protection,2024,51(1):86-91.
|
[8] |
袁海平,张羽,熊礼军,等. 基于组合权重—集对分析的地压风险预评估[J]. 矿业安全与环保,2022,49(1):71-76.
YUAN Haiping,ZHANG Yu,XIONG Lijun,et al. Prediction assessment of ground pressure risk based on combination weight and set pair analysis[J]. Mining Safety & Environmental Protection,2022,49(1):71-76.
|
[9] |
钮涛,李栋,王平,等. 基于地质保障系统的煤矿灾害监测预警及综合防治平台研究[J]. 中国煤炭,2024,50(5):82-89.
NIU Tao,LI Dong,WANG Ping,et al. Research on coal mine disaster monitoring,early warning and comprehensive prevention platform based on geological guarantee system[J]. China Coal,2024,50(5):82-89.
|
[10] |
窦林名,蔡武,巩思园,等. 冲击危险性动态预测的震动波CT技术研究[J]. 煤炭学报,2014,39(2):238-244.
DOU Linming,CAI Wu,GONG Siyuan,et al. Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection[J]. Journal of China Coal Society,2014,39(2):238-244.
|
[11] |
窦林名,周坤友,宋士康,等. 煤矿冲击矿压机理、监测预警及防控技术研究[J]. 工程地质学报,2021,29(4):917-932.
DOU Linming,ZHOU Kunyou,SONG Shikang,et al. Occurrence mechanism,monitoring and prevention technology of rockburst in coal mines[J]. Journal of Engineering Geology,2021,29(4):917-932.
|
[12] |
窦林名,何学秋. 采矿地球物理学[M]. 北京:中国科学文化出版社,2002.
|
[13] |
BUKOWSKA M. The probability of rockburst occurrence in the Upper Silesian Coal Basin area dependent on natural mining conditions[J]. Journal of Mining Science,2006,42(6):570-577.
|
[14] |
彭永伟,齐庆新,毛德兵,等. 回采过程中煤层冲击危险性评价方法研究[J]. 煤矿开采,2010(1):1-3.
PENG Yongwei,QI Qingxin,MAO Debing,et al. Research on evaluation method for coal bursting danger in coal mining[J]. Coal Mining Technology,2010(1):1-3.
|
[15] |
中国矿业大学冲击矿压防治工程研究中心. 综合指数法使用说明[EB/OL]. [2020-08-18]. https://burst.cumt.edu.cn/__local/1/73/60/5C0EEE023397FCC6B0C9058C8E6_3D40075F_5F9C9.pdf
|
[16] |
张宏伟,孟庆男,韩军,等. 地质动力区划在冲击地压矿井中的应用[J]. 辽宁工程技术大学学报(自然科学版),2016,35(5):449-455.
ZHANG Hongwei,MENG Qingnan,HAN Jun,et al. Application of the geological dynamic division in rock burst coal mine[J]. Journal of Liaoning Technical University (Natural Science),2016,35(5):449-455.
|
[17] |
KONICEK P,SCHREIBER J. Heavy rockbursts due to longwall mining near protective pillars:A case study[J]. International Journal of Mining Science and Technology,2018,28(5):799-805.
|
[18] |
ZHU Zhijie,ZHANG Hongwei,HAN Jun,et al. A risk assessment method for rockburst based on geodynamic environment[J]. Shock and Vibration,2018,2018(1):1-10.
|
[19] |
ZHANG Jinkui,CHENG Xianggang,QIAO Wei,et al. Risk assessment of rockburst with a LS-FAHP-CRITIC method:A case in gaojiapu coal mine,north of China[J]. Geofluids,2022,2022:7275050.
|
[20] |
DU Weisheng,LI Haitao,QI Qingxin,et al. Research on multifactor analysis and quantitative evaluation method of rockburst risk in coal mines[J]. Lithosphere,2022,2022:5005317.
|
[21] |
贺永亮,王素萍,付玉平,等. 基于多源信息融合的冲击地压风险预警与弱结构防治技术[J]. 煤矿安全,2023,54(7):78-84.
HE Yongliang,WANG Suping,FU Yuping,et al. Early-warning and soft structure prevention technology of rock burst risk based on multi-source information fusion[J]. Safety in Coal Mines,2023,54(7):78-84.
|
[22] |
张泓,晋香兰,李贵红,等. 鄂尔多斯盆地侏罗纪—白垩纪原始面貌与古地理演化[J]. 古地理学报,2008,10(1):1-11.
ZHANG Hong,JIN Xianglan,LI Guihong,et al. Original features and palaeogeographic evolution during the Jurassic-Cretaceous in Ordos Basin[J]. Journal of Palaeogeography,2008,10(1):1-11.
|
[23] |
白云来,马玉虎,黄勇,等. 鄂尔多斯古陆南部大陆边缘寒武纪奥拉谷存在的沉积学证据及其油气勘探意义[J]. 天然气地球科学,2014,25(11):1706-1717.
BAI Yunlai,MA Yuhu,HUANG Yong,et al. Sedimentary characteristics and hydrocarbon exploration implications on the Cambrian aulacogen of the southern Ordos continental margin,North China[J]. Natural Gas Geoscience,2014,25(11):1706-1717.
|
[24] |
张永霖. 鄂尔多斯盆地东南缘早、中侏罗世延安组沉积环境与煤炭资源分布规律[J]. 地质论评,1983,29(4):358-364.
ZHANG Yonglin. The sedimentary environment of early-Middle Jurassic Yenan formation and distribution of coal resources in the southeastern border of Ordos basin[J]. Geological Review,1983,29(4):358-364.
|
[25] |
魏斌,张忠义,杨友运. 鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J]. 地层学杂志,2006,30(4):367-372.
WEI Bin,ZHANG Zhongyi,YANG Youyun. Sedimentary facies of the Cretaceous Luohe and huanhe-Huachi formations in the Ordos basin[J]. Journal of Stratigraphy,2006,30(4):367-372.
|
[26] |
兰天伟,张宏伟,韩军,等. 基于应力及能量条件的岩爆发生机理研究[J]. 采矿与安全工程学报,2012,29(6):840-844.
LAN Tianwei,ZHANG Hongwei,HAN Jun,et al. Study on rock burst mechanism based on geo-stress and energy principle[J]. Journal of Mining & Safety Engineering,2012,29(6):840-844.
|
[27] |
张如九,张延杰,高仝,等. 基于最大能量耗散率的岩爆倾向性指标研究[J]. 岩石力学与工程学报,2023,42(12):2993-3009.
ZHANG Rujiu,ZHANG Yanjie,GAO Tong,et al. A novel index of rockburst proneness based on maximum energy dissipation rate[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(12):2993-3009.
|
[28] |
谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003-3010.
XIE Heping,JU Yang,LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3003-3010.
|
[29] |
ZHU Zhijie,WU Yunlong,HAN Jun. A prediction method of coal burst based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Frontiers in Earth Science,2022,9:834958.
|
[30] |
夏永学. 冲击地压动-静态评估方法及综合预警模型研究[D]. 北京:煤炭科学研究总院,2020. XIA Yongxue. Research on the method of dynamic-static evaluation of rockburst and comprehensive early warning model [D]. Beijing:China coal research institute,2020.
|
[31] |
SUN Yuantian,LI Guichen,ZHANG Junfei,et al. Rockburst intensity evaluation by a novel systematic and evolved approach:Machine learning booster and application[J]. Bulletin of Engineering Geology and the Environment,2021,80(11):8385-8395.
|
[32] |
段玉莹. 基于理论与数据驱动融合深度学习模型的冲击地压风险预测研究[D]. 徐州:中国矿业大学,2022. DUAN Yuying. Research on rockburst risk prediction based on theory and data driven fusion deep learning model[D]. Xuzhou:China University of Mining and Technology,2022.
|
[33] |
张满仓,兰天伟. 基于GIS的煤矿冲击地压危险区域预测[J]. 矿业安全与环保,2024,51(3):126-131.
ZHANG Mancang,LAN Tianwei. Regional prediction of rock burst hazard in coal mine based on GIS[J]. Mining Safety & Environmental Protection,2024,51(3):126-131.
|
[34] |
HAN Yanbo,WANG Qiqing,LI Wenping,et al. Predicting the height of the water-conducting fractured zone in fully mechanized top coal caving longwall mining of very thick Jurassic coal seams in Western China based on the NNBR model[J]. Mine Water and the Environment,2023,42(1):121-133.
|