HAO Zhiyong, WANG Shuailing, PAN Yishan. Experimental study on prediction of rock burst risk by multi-parameter indexes of borehole[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 203-211. DOI: 10.3969/j.issn.1001-1986.2018.06.031
Citation: HAO Zhiyong, WANG Shuailing, PAN Yishan. Experimental study on prediction of rock burst risk by multi-parameter indexes of borehole[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 203-211. DOI: 10.3969/j.issn.1001-1986.2018.06.031

Experimental study on prediction of rock burst risk by multi-parameter indexes of borehole

Funds: 

National Natural Science Foundation of China(51674133)

More Information
  • Received Date: May 07, 2018
  • Published Date: December 24, 2018
  • In order to accurately predict the danger of rock burst, a method for predicting impact risk by monitoring the variation law of drilling parameters such as drill rod thrust, drill rod torque and drill cutting quantity during drilling was proposed. Using self-developed integrated testing device of multi-parameters of borehole, test and analysis of multi-parameters of different coal stress state under laboratory environment, it was found that the drilling rod torque and drilling cutting quantity increased with the increase of the stress of the coal body. As the drilling time increased, the drilling rod thrust firstly increased and then decreased, showed a trough of wave, and then increased and finally decreased. Under the same drilling and drilling tool conditions, in-situ experiment drilling was carried out in mine. The results indicate that with the increase of drilling depth, the change regulation of drilling rod torque and drilling cutting quantity showed a high degree of consistency, before 5 m depth, all of them first increased and then decreased. The thrust of drilling rod is on the rise in 1-4 m, down to the trough of wave at 5 m, then the thrust value rised again, and finally showed a steady trend. The distribution of stress in this area was divided, it could be determined that the stress peak point was approximately at 5 m deep in the hole. And the SPSS data analysis software was used to preliminarily determine that the critical thrust index of the drill rod of this test point was 7.5 kN, the critical index of drilling rod torque was 50 N·m. The research results can provide theoretical basis and engineering guidance for prediction of coal mine dynamic disaster risk such as rock burst.
  • [1]
    潘一山. 冲击地压发生和破坏过程研究[D]. 北京:清华大学, 1999.
    [2]
    赵本钧. 冲击地压及其防治[M]. 北京:煤炭工业出版社, 1994.
    [3]
    何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803-2813.

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
    [4]
    胡克智,刘宝琛,马光,等. 煤矿的冲击地压[J]. 科学通报, 1996,11(9):430-432.

    HU Kezhi,LIU Baochen,MA Guang,et al. The rock burst in coal mine[J]. Chinese Science Bulletin,1996,11(9):430-432.
    [5]
    罗浩,潘一山,肖晓春,等. 矿山动力灾害多参量危险性评价及分级预警[J]. 中国安全科学学报,2013,23(11):85-90.

    LUO Hao,PAN Yishan,XIAO Xiaochun,et al. Multi-parameter risk evaluation and graded early warning of mine dynamic disaster[J]. China Safety Science Journal,2013,23(11):85-90.
    [6]
    潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报,2016,41(1):105-112.

    PAN Yishan. Integrated study on compound dynamic disaster of coal-gas outburst and rockburst[J]. Journal of China Coal Society,2016,41(1):105-112.
    [7]
    刘晓斐,肖栋,邵学峰,等. 矿井冲击危险电磁辐射连续监测及预测研究[J]. 煤田地质与勘探,2007,35(6):67-69.

    LIU Xiaofei,XIAO Dong,SHAO Xuefeng,et al. Electromagnetic radiation law of continuous monitoring and forecasting rock burst in coal mine[J]. Coal Geology & Exploration,2007, 35(6):67-69.
    [8]
    郭延华,姜福兴,张常光. 高地应力下圆形巷道临界冲击地压解析解[J]. 工程力学,2011,28(2):118-122.

    GUO Yanhua,JIANG Fuxing,ZHANG Changguang. Analytical solution for critical rockburst of a circular chamber subjected to high in-situ stress[J]. Engineering Mechanics,2011,28(2):118-122.
    [9]
    FUJⅡ Y,ISHIJIMA Y,DEGUCHI G. Prediction of coal face rockbursts and microseismicity in deep longwall coal mining[J]. International Journal of Rock Mechanics and Mining Sciences, 1999,34(1):85-96.
    [10]
    朱丽媛,李忠华,徐连满. 钻屑扭矩法测定煤体应力与煤体强度研究[J]. 岩土工程学报,2014,36(11):2096-2102.

    ZHU Liyuan,LI Zhonghua,XU Lianman. Measuring stress and strength of coal by drilling cutting torque method[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):2096-2102.
    [11]
    潘一山,徐连满. 钻屑温度法预测冲击地压的试验研究[J]. 岩土工程学报,2012,34(12):2228-2232.

    PAN Yishan,XU Lianman. Experimental investigation on temperature of drilling cuttings to predict rock burst[J]. Chinese Journal of Geotechnical Engineering,2012,34(12):2228-2232.
    [12]
    徐连满,李祁,潘一山,等. 钻杆扭矩法预测冲击地压的研究[J]. 工程力学,2014,31(11):251-256.

    XU Lianman,LI Qi,PAN Yishan,et al. Study on forecasting rockburst of the drill pipe torque method[J]. Engineering Mechanics,2014,31(11):251-256.
    [13]
    陆振裕,窦林名,徐学锋,等. 钻屑法探测巷道围岩应力及预测冲击地压危险新探究[J]. 煤炭工程,2011,43(1):72-74.

    LU Zhenyu,DOU Linming,XU Xuefeng,et al. New discovery on drilling cuttings method to detect surrounding rock stress of mine roadway and predictmine pressure bumping dangers[J]. Coal Engineering,2011,43(1):72-74.
    [14]
    曲效成,姜福兴,于正兴,等. 基于当量钻屑法的冲击地压监测预警技术研究及应用[J]. 岩石力学与工程学报,2011,30(11):2346-2351.

    QV Xiaocheng,JIANG Fuxing,YU Zhengxing,et al. Rockburst monitoring and precaution technology based on equivalent drilling research and its applications[J]. Chinese Journal of Geotechnical Engineering,2011,30(11):2346-2351.
    [15]
    王恩元,何学秋,刘贞堂,等. 煤岩动力灾害电磁辐射监测仪及其应用[J]. 煤炭学报,2003,28(4):366-369.

    WANG Enyuan,HE Xueqiu,LIU Zhentang,et al. Electromagnetic radiation detector of coal or rock dynamic disasters and its application[J]. Journal of China Coal Society,2003,28(4):366-369.
    [16]
    吕进国,姜耀东,赵毅鑫,等. 冲击地压层次化监测及其预警方法的研究与应用[J]. 煤炭学报,2013,38(7):1161-1167.

    LYU Jinguo,JIANG Yaodong,ZHAO Yixin,et al. Hierarchical monitoring for coal bumps and its study and application of early warning methods[J]. Journal of China Coal Society,2013,38(7):1161-1167.
    [17]
    陈峰,潘一山,李忠华,等. 利用钻屑法对卸压钻孔措施效果的分析评价[J]. 岩土工程学报,2013,35(增刊2):266-270.

    CHEN Feng,PAN Yishan,LI Zhonghua,et al. Analysis and evaluation of effects of borehole pressure relief measures by drilling cutting method[J]. Chinese Journal of Geotechnical Engineering,2013,35(S2):266-270.
    [18]
    张明杰,杨硕. 松软煤层螺旋钻杆钻进中的吸钻卡钻力学机理[J]. 煤田地质与勘探,2015,43(5):121-124.

    ZHANG Mingjie,YANG Shuo. Mechanical mechanism of auger drilling rod sticking in soft coal seam[J]. Coal Geology & Exploration,2015,43(5):121-124.
    [19]
    易俊,姜永东,鲜学福. 应力场、温度场瓦斯渗流特性实验研究[J]. 中国矿业,2007,16(5):113-116.

    YI Jun,JIANG Yongdong,XIAN Xuefu. An experimental methane seepage in research on the characters of stress field and temperature field[J]. China Mining Magazine,2007,16(5):113-116.
    [20]
    韩昌良. 沿空留巷围岩应力优化与结构稳定控制[D]. 徐州:中国矿业大学,2013.
  • Cited by

    Periodical cited type(12)

    1. 郑永旺,崔轶男,李鑫,肖翠,郭涛,张登峰. 深层高阶煤层CO_2-ECBM技术研究与应用启示——以沁水盆地晋中地区为例. 石油实验地质. 2025(01): 143-152 .
    2. 张瑜. 碳中和目标下二氧化碳能源开发现状及展望. 化学工程师. 2025(02): 69-72+52 .
    3. 邓小鹏,相建华. 东曲矿8号煤CO_2和CH_4竞争吸附特性分子模拟研究. 煤矿安全. 2024(03): 18-24 .
    4. 司小昆. 封闭空间煤心固碳过程CO_2吸附-运移特征. 煤矿安全. 2024(04): 26-32 .
    5. 薛恩思. CO_2-ECBM过程中煤层渗透率演化规律. 煤矿安全. 2024(04): 42-47 .
    6. 宋平,崔晨光,张记刚,刘凯,邓振龙,谭龙,禹希科. 玛湖凹陷上乌尔禾组强敏感油藏CO_2同步吞吐试验. 新疆石油地质. 2024(03): 355-361 .
    7. 金毅,李娅妮,宋慧波,赵梦余,杨运航,陈泽楠. 分形界面吸附行为初探. 煤田地质与勘探. 2024(05): 1-11 . 本站查看
    8. 马亮,邓广哲,王守印,蔚斐,高亮,袁超. 碳封存超临界CO_2螺旋管换热器传热规律. 西安科技大学学报. 2024(03): 467-477 .
    9. 车永芳. 二氧化碳驱替煤层气技术发展现状分析. 煤质技术. 2024(05): 67-73 .
    10. 肖智勇,王刚,刘杰,邓华锋,姜枫,郑程程. 热–流–固耦合作用下含水煤层渗透率模型建立及应用研究. 岩石力学与工程学报. 2024(12): 3044-3057 .
    11. 苏现波,王乾,于世耀,赵伟仲,王小明,毕彩芹,陈明,王一兵,孙长彦,伏海蛟,邹成龙,张双斌,黄津,谢相军. 基于低负碳减排的深部煤系气一体化开发技术路径. 石油学报. 2023(11): 1931-1948 .
    12. 朱磊,刘成勇,古文哲,盛奉天,袁超峰. 双碳目标下“煤基固废-CO_2”协同充填封存技术构想. 矿业安全与环保. 2023(06): 16-21+28 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (52) PDF downloads (10) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return