WEI Wenjie, ZHANG Shaohe. Analysis on rock fragmentation mechanism of impregnateddiamond bit with grids matrix[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 180-185. DOI: 10.3969/j.issn.1001-1986.2017.05.031
Citation: WEI Wenjie, ZHANG Shaohe. Analysis on rock fragmentation mechanism of impregnateddiamond bit with grids matrix[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 180-185. DOI: 10.3969/j.issn.1001-1986.2017.05.031

Analysis on rock fragmentation mechanism of impregnateddiamond bit with grids matrix

Funds: 

National Natural Science Foundation of China(41302124)

More Information
  • Received Date: May 15, 2016
  • Published Date: October 24, 2017
  • Based on the change of rock macroscopic crack, fracture problem caused by rock crack during the drilling with impregnated diamond bit was studied. A simplified rock fracture equivalent model was established with simplified stress and crack by using the rock fracture mechanics theory combining practical working conditions in the process of drilling, a new rock fragmentation mechanism of impregnated diamond bit with grids matrix was analyzed theoretically. The results indicated that special grid structure can effectively increase drilling pressure to press into rock to induce crushing cavity and crack compared with that of the conventional impregnated diamond bit, pressure per unit area increased by 67%, from 68.03 kgf/cm2 to 113.33 kgf/cm2. Special grid structure is conducive for the flushing fluid to store, better to improve the cooling effect of diamond particles, and to break rock matrix in a more beneficial way of tensile crack.
  • [1]
    OJALA I O,NGWENYA B T,MAIN I G,et al. Correlation of microseismic and chemical properties of brittle deformation in Locharbriggs sandstone[J]. Journal of Geophysical Research,2003,108(5):2268-2277.
    [2]
    王敏,万文,赵延林. 双轴拉伸条件下张开型裂纹的数值模拟[J]. 矿业工程研究,2013,28(1):7-10.

    WANG Min,WAN Wen,ZHAO Yanlin. Numerical simulation calculation of mode-I crack under biaxial tension[J]. Mineral Engineering Research,2013,28(1):7-10.
    [3]
    曹平,杨慧,江学良,等. 水岩作用下岩石亚临界裂纹的扩展规律[J]. 中南大学学报(自然科学版),2010,41(2):649-654.

    CAO Ping,YANG Hui,JIANG Xueliang,et al. Subcritical crack growth of rock during water-rock interaction[J]. Journal of Central South University(Science and Technology),2010,41(2): 649-654.
    [4]
    DILL S J,BENNISON S J,DAUSKARDT R H. Subcritical crack growth behaviour of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect[J]. Journal of the America Ceramic Society,1977,80(3):773-776.
    [5]
    王传留,孙友宏,刘宝昌,等. 仿生耦合孕镶金刚石钻头的试验及碎岩机理分析[J]. 中南大学学报(自然科学版),2011,42(5):1321-1325.

    WANG Chuanliu,SUN Youhong,LIU Baochang,et al. Experiment and rock fragmentation mechanism of bionic coupling impregnated diamond bit[J]. Journal of Central South University(Science and Technology),2011,42(5):1321-1325.
    [6]
    赵洪山,温林荣,张坤,等. 一种切削-研磨型孕镶金刚石钻头的研制及应用[J]. 石油机械,2014,42(6):16-19.

    ZHAO Hongshan,WEN Linrong,ZHANG Kun,et al. Development and application of a cutting-abrasive impregnated diamond bit[J]. China Petroleum Machinery,2014,42(6):16-19.
    [7]
    关舒伟. 新型孕镶金刚石钻头研制及试验[J]. 石油钻探技术,2015,43(4):129-132.

    GUAN Shuwei. Development and testing of a new type of diamond-impregnated bitst[J]. Petroleum Drilling Techniques,2015,43(4):129-132.
    [8]
    孙友宏. 仿生非光滑孕镶金刚石钻头研究[D]. 长春:吉林大学,2006.
    [9]
    李庆芬. 断裂力学及其工程应用[M]. 哈尔滨:哈尔滨工程大学出版社,2007:6-23.
    [10]
    李贺. 岩石断裂力学[M]. 重庆:重庆大学出版社,1988:16-65.
    [11]
    张绍和,张昊旸,曲飞龙,等. 栅格状工作层金刚石钻头及其3D打印制作工艺:201510991131.5[P]. 2016-06-08.
    [12]
    赵延林,彭青阳,万文,等. 高水压下岩体裂纹扩展的渗流-断裂耦合机制与数值实现[J]. 岩土力学,2014,35(2):556-564.

    ZHAO Yanlin,PENG Qingyang,WAN Wen,et al. Seepage-fracture coupling mechanism of rock masses cracking propagation under high hydraulic pressure and numerical verification[J]. Rock and Soil Mechanics,2014,35(2):556-564.
    [13]
    宋义敏,杨小彬,金璐,等. 冲击载荷作用下岩石Ⅰ型裂纹动态断裂试验研究[J]. 振动与冲击,2014,33(11):49-53.

    SONG Yimin,YANG Xiaobin,JIN Lu,et al. Dynamic fracture test for I-type crack under impact load[J]. Journal of Vibration and Shock,2014,33(11):49-53.
    [14]
    BRUNO M S,NAKAGAWA F M. Pore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(4):261-273.
    [15]
    唐春安,杨天鸿,李连崇,等. 孔隙水压力对岩石裂纹扩展影响的数值模拟[J]. 岩土力学,2003,24(增刊2):18-20.

    TANG Chun'an,YANG Tianhong,LI Lianchong,et al. Numerical simulation to influence of pore pressure magnitude and gradient on fracture propagation in brittle heterogeneous rocks[J]. Rock and Soil Mechanics,2003,24(S2):18-20.
    [16]
    中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社,1981:112-113.
    [17]
    张绍和,王涛. 自形成同心径向环齿金刚石钻头设计与制造[J]. 金刚石与磨料磨具工程,2004,24(5):59-62.

    ZHANG Shaohe,WANG Tao. Research on concentrical segmented diamond bit[J]. Diamond and Abrasives Engineering,2004,24(5):59-62.
    [18]
    吴其干. 岩石可钻性及岩石破碎机理探讨[J]. 西部探矿工程,2015,27(1):70-72.

    WU Qigan. Analysis on rock fragmentation mechanism and rock drillability[J]. West-China Exploration Engineering,2015,27(1):70-72.
    [19]
    肖洪天,周维垣. 脆性岩石变形与破坏的细观力学模型研究[J]. 岩石力学与工程学报,2001,20(2):151-155.

    XIAO Hongtian,ZHOU Weiyuan. A mesoscopic model of deformation and failure for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(2):151-155.
    [20]
    崔振东,刘大安,安光明,等. 岩石Ⅰ型断裂韧度测试方法研究进展[J]. 测试技术学报,2009,23(3):189-196.

    CUI Zhendong,LIU Daan,AN Guangming,et al. Research progress in mode-I fracture toughness testing methods for rocks[J]. Journal of Test and Measurement Technology,2009,23(3):189-196.
  • Related Articles

    [1]ZHANG Tianjun, CAO Xinshuang, SONG Shuang, HE Suinan, XUE Yilun, LIU Guoying, CHEN Juntao. Intelligent identification of coal mass acoustic emission characteristics and crack propagation state based on NRBO-XGBoost[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 1-12. DOI: 10.12363/issn.1001-1986.24.12.0801
    [2]ZHANG Tianjun, CAO Xinshuang, SONG Shuang, HE Suinan, XUE Yilun, LIU Guoying, CHEN Juntao. Intelligent identification of coal mass acoustic emission characteristics and crack propagation state based on NRBO-XGBoost[J]. COAL GEOLOGY & EXPLORATION.
    [3]PENG Xu, HAO Shijun. Rock breaking mechanism of composite impact of full-size PDC bit based on finite element analysis[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 240-246,252. DOI: 10.3969/j.issn.1001-1986.2021.02.030
    [4]WANG Zhirong, HU Kai, YANG Jie, CHEN Lingxia. Extension model of fracturing cracks of translayer horizontal well in roof of soft coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 20-25. DOI: 10.3969/j.issn.1001-1986.2019.06.004
    [5]SUN Jiwei, SHEN Lina, YANG Gansheng, YE Jichao. Study on local volume breakage of diamond-impregnated bit[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 232-238. DOI: 10.3969/j.issn.1001-1986.2019.05.033
    [6]JIA Qifeng, NI Xiaoming, ZHAO Yongchao, CAO Yunxing. Fracture extension law of hydraulic fracture in coal with different structure[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 51-57. DOI: 10.3969/j.issn.1001-1986.2019.02.009
    [7]WANG Jialiang, WEI Wenjie, ZHANG Shaohe, PENG Fenfei. Influence mechanism of hard brittle abrasive on the drilling performance of impregnated diamond bit[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 200-205,210. DOI: 10.3969/j.issn.1001-1986.2019.01.031
    [8]QU Feilong, ZHANG Shaohe, WANG Jialiang. Matrix formula for impregnated diamond bit with grids[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 170-175. DOI: 10.3969/j.issn.1001-1986.2018.01.029
    [9]WANG Jialiang, ZHANG Shaohe. Performance optimization of diamond-impregnated bit for extra-hard and strong-abrasive rocks[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(6): 159-163. DOI: 10.3969/j.issn.1001-1986.2016.06.029
    [10]ZHANG Guangcheng, HU Jing. Study on crack propagation direction of intermittent single jointed rock mass[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 43-48. DOI: 10.3969/j.issn.1001-1986.2011.04.012
  • Cited by

    Periodical cited type(10)

    1. 王勃,徐凤银,金雪,王立龙,屈争辉,张文胜,李志,刘国伟,张艺腾,史鸣剑. 沁水盆地郑庄区块煤层气井产出水化学成分演变及其高产响应. 石油学报. 2024(11): 1638-1651 .
    2. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 .
    3. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 .
    4. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 .
    5. 华明国,田林,张燕,李佳,曹永恒. 潞安矿区煤层气井产出水地球化学特征及意义. 煤田地质与勘探. 2022(02): 65-71 . 本站查看
    6. 吴金刚,毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展. 煤矿安全. 2021(07): 162-169 .
    7. 刘建华,王生维,张晓飞. 顺煤层井煤屑录井法在废弃矿区二次开发中的应用研究. 煤炭技术. 2021(09): 11-14 .
    8. 李忠城,吴建光,王建中,吴翔,卢国军. 沁水盆地南部15号煤层和顶板K_2灰岩水文地球化学演化特征. 煤田地质与勘探. 2020(03): 75-80 . 本站查看
    9. 马凯,马钱钱,史永涛. 远红外作用下不同含水率煤体吸附/解吸能量变化规律. 煤田地质与勘探. 2020(03): 86-92 . 本站查看
    10. 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因. 煤田地质与勘探. 2020(04): 156-164+173 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (106) PDF downloads (9) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return