QU Feilong, ZHANG Shaohe, WANG Jialiang. Matrix formula for impregnated diamond bit with grids[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 170-175. DOI: 10.3969/j.issn.1001-1986.2018.01.029
Citation: QU Feilong, ZHANG Shaohe, WANG Jialiang. Matrix formula for impregnated diamond bit with grids[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 170-175. DOI: 10.3969/j.issn.1001-1986.2018.01.029

Matrix formula for impregnated diamond bit with grids

Funds: 

The Fundamental Research Funds for the Central Universities of Central South University(2017zzts788)

More Information
  • Received Date: May 09, 2017
  • Published Date: February 24, 2018
  • In order to improve the efficiency of drilling the hard rock formation, the structure of impregnated diamond bit matrix was designed as grid shape, and the rock fragmentation mechanism of impregnated diamond bit with grids matrix was theoretical analyzed while drilling hard rock formation. Also, Inconel 718 and cobalt chromium alloy samples were prepared by using powder metallurgy, the optimum sintering parameter was determined by studying the effect of sintering parameters on the hardness, abrasive resistance and bending strength. For comparison, the mechanical properties of Inconel 718 and cobalt chromium alloy fetal bodies sintered at the optimum sintering parameter were tested. The results show that Inconel 718 and cobalt chromium alloy both have a high bending strength, which meet the requirements of the bending strength of the matrix. The hardness of Inconel 718 is lower than traditional WC matrix and its abrasive resistance is faint. This is more suitable to be applied in the special working conditions of fast drilling speed, such as emergency investigation of geological disasters; besides, the hardness and abrasive resistance of cobalt chrome alloy are close to the traditional WC matrix and thus cobalt chrome alloy is more suitable to be used as an impregnated diamond bit matrix material.
  • [1]
    邓柏松. 适应深孔条件的孕镶金刚石钻头研究[D]. 武汉:中国地质大学(武汉),2011:1-3.
    [2]
    章文姣. 钎焊-热压多层有序排列金刚石钻头的研究[D]. 武汉:中国地质大学(武汉),2012:9-10.
    [3]
    WEAVER G E,CLAYTON R I. A new PDC cutting structure improves bit stabilization and extends application into harder rock type[C]//the 1993 SPE/IADC Drilling Conference, February 23-25,1993,Amsterdam, The Netherlands.1993:537-548.
    [4]
    蒋青光,张绍和,陈平,等. 新型优质孕镶金刚石钻头的研制[J]. 金刚石与模具磨料工程,2008(12):12-16.

    JIANG Qingguang, ZHANG Shaohe, CHEN Ping, et al. Development of new type and high quality impregnated diamond bits[J]. Diamond and Abrasives Engineering,2008(12):12-16.
    [5]
    孙友宏,高科,张丽君,等. 耦合仿生孕镶金刚石钻头高效耐磨机理[J]. 吉林大学学报(地球科学版),2012,42(增刊3):220-225.

    SUN Youhong,GAO Ke,ZHANG Lijun,et al. High drilling efficiency and wear-resistant mechanism of coupling bionics impregnated diamond bit[J]. Journal of Jilin University(Earth Science Edition),2012,42(S3):220-225.
    [6]
    XU Liang,SUN Youhong,GAO Ke. Efficient rock fragmentation mechanism analysis of impregnated diamond bionies bit[J]. Journal of Jilin University:Earth Science Edition,2008, 38(6):1015-1019.
    [7]
    张绍和. 金刚石钻头设计与制造新理论新技术[M]. 武汉:中国地质大学出版社,2001:34-38.
    [8]
    郭庆清,王佳亮,张绍和. 胎体弱化颗粒材质对WC基孕镶金刚石钻头胎体磨损性能的影响[J]. 中国有色金属学报, 2015,25(9):2531-2536.

    GUO Qingqing,WANG Jialiang,ZHANG Shaohe. Effects of matrix weaken particle material on matrix wear resistance of diamond bit based on WC[J]. The Chinese Journal of Nonferrous Metals,2015,25(9):2531-2536.
    [9]
    杜宇雷,孙菲菲,原光,等. 3D打印材料的发展现状[J]. 徐州工程学院学报(自然科学版),2014,29(1):20-24.

    DU Yulei,SUN Feifei,YUAN Guang,et al. Current status of materials for three-dimensional printing[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition),2014,29(1):20-24.
    [10]
    BREDT J F,ANDERSON T C. Three-dimensional printing materials system:US 6416850 B1[P]. 2002-07-09.
    [11]
    郑增,王联凤,严彪. 3D打印金属材料研究进展[J]. 上海有色金属,2016,37(1):57-60.

    ZHENG Zeng,WANG Lianfeng,YAN Biao. Research progress of metal materials for 3D printing[J]. Shanghai Nonferrous Metals,2016,37(1):57-60.
    [12]
    NERSISYAN H H,YOO B U,KIM Y M,et al. Gas-phase supported rapid manufacturing of Ti-6Al-4V alloy spherical particles for 3D printing[J]. Chemical Engineering Journal, 2016,304(6):232-240.
    [13]
    GOYOS B L,GARCÍA-uñón E,FERNÁNDEZ-García E,et al. Mechanical and biological evaluation of 3D printed 10CeTZP-Al2O3structures[J]. Journal of the European Ceramic Society,2017,37(9):3151-3158.
    [14]
    阎冠欣. 热压高磷铁基胎体性能及其金刚石钻头研究[J]. 探矿工程(岩土钻掘工程),2009,36(5):75-77.

    YAN Guanxin. Study on the performance of hot pressed high phosphorus iron alloy matrix and the diamond bit[J]. Exploration Engineering(Rock and Soil Drilling and Tunneling),2009, 36(5):75-77.
    [15]
    黄培云. 粉末冶金原理[M]. 2版. 北京:冶金工业出版社, 1997:226-230.
    [16]
    向波. 金刚石制品用预合金粉末的制备及性能[D]. 长沙:中南大学,2007:1-40
    [17]
    马银龙,孙友宏,高科,等. 热压碳化钨基复合胎体材料性能试验[J]. 吉林大学学报(地球科学版),2013,43(1):207-211.

    MA Yinlong,SUN Youhong,GAO Ke,et al. Experiment on WC matrix composites performance prepared by hot-pressing sintering[J]. Journal of Jilin University(Earth Science Edition), 2013,43(1):207-211.
    [18]
    谢志刚,刘心宇,秦海青,等. 金刚石制品用FeCoCu胎体的烧结与力学性能研究[J]. 中南大学学报(自然科学版),2010, 41(6):2178-2183.

    XIE Zhigang,LIU Xinyu,QIN Haiqing,et al. Sintering and mechanical properties of FeCoCu fetal body applied for diamond tools[J]. Journal of Central South University (Science and Technology),2010,41(6):2178-2183.
    [19]
    王帅,吕智,林峰,等. WC含量对金刚石钻头胎体性能的影响研究[J]. 金刚石与磨料磨具工程,2014(6):16-21.

    WANG Shuai,LYU Zhi,LIN Feng,et al. Effect of WC content on the properties of impregnated diamond bit matrix[J]. Diamond and Abrasives Engineering,2014(6):16-21.
  • Related Articles

    [1]JIN Dewu, LI Chaofeng, LIU Yingfeng, CAO Haitao, REN Dengjun, WANG Hongliang, ZHANG Jinkui, HUANG Yang, YANG Guodong, GUO Kang, FAN Min, LIU Chenkai. Characteristics of roof water hazard of coal seam in Huanglong Coalfield and key technologies for prevention and control[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(1): 205-213. DOI: 10.12363/issn.1001-1986.22.10.0754
    [2]LI Zhi, ZHENG Shitian, SHI Zhiyuan, WANG Yuhang. Prevention and control technology of goaf water hazard in unauthorized mining areas of extremely soft and medium-thick coal seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 167-174. DOI: 10.3969/j.issn.1001-1986.2021.06.020
    [3]WANG Hao, DONG Shuning, QIAO Wei, JI Yadong, ZHU Kaipeng, ZHOU Zhenfang, NING Dianyan, SHANG Hongbo. Construction and application of remote service cloud platform for mine water hazard prevention and control[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 208-216. DOI: 10.3969/j.issn.1001-1986.2021.01.022
    [4]REN Dengjun, SUN Yayue, LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005
    [5]WANG Hao. Formation mechanism of coal seam aquifer and water hazard control technology[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 117-123. DOI: 10.3969/j.issn.1001-1986.2019.03.019
    [6]LI Wei, WU Jiwen, ZHAI Xiaorong. Evaluation of goaf water hazard and its prevention and control technology of abandoned coal mines in Zhahe mining area of Huaibei[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 16-22. DOI: 10.3969/j.issn.1001-1986.2018.S1.004
    [7]MA Lei, QIAN Jiazhong, ZHAO Weidong, ZHOU Xiaoping. GIS-based decision-making support system for prevention and control of water hazards in coal mines[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(5): 44-49. DOI: 10.3969/j.issn.1001-1986.2014.05.009
    [8]HU Weiyue. The characteristics of karst and deep coal mine karst water hazards in eastern North China[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 23-27. DOI: 10.3969/j.issn.1001-1986.2010.02.006
    [9]DONG Shu-ning, HU Wei-yue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(5): 34-38.
    [10]ZHANG Jin-tao. The relationship of Tertiary groundwater and mining No.4 coal seam in Huafeng Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(5): 35-38.
  • Cited by

    Periodical cited type(16)

    1. 刘国超. 奥灰岩渗透特性与断层注浆扩散规律实验研究. 煤矿现代化. 2025(02): 97-101 .
    2. 夏玉成,孙学阳,苗霖田,郭晨,杜荣军. 智能时代的矿井地质工作展望——矿井开采智能地质保障技术体系架构. 煤田地质与勘探. 2025(01): 64-76 . 本站查看
    3. 靳德武,李超峰,刘英锋,曹海涛,任邓君,王红亮,张金魁,黄阳,杨国栋,郭康,樊敏,刘宸铠. 黄陇煤田煤层顶板水害特征及其防控技术. 煤田地质与勘探. 2023(01): 205-213 . 本站查看
    4. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 . 本站查看
    5. 范立民,马万超,常波峰,孙魁,苗彦平,路波,田水豹,杨磊. 榆神府矿区地下水水化学特征及形成机理. 煤炭科学技术. 2023(01): 383-394 .
    6. 李舒,杨泽元,马雄德,刘胜祖,方楚婧,张奥奇. 神府南区延安组含水层富水性对矿井涌水量的影响研究. 煤田地质与勘探. 2023(06): 92-102 . 本站查看
    7. 何金 ,丁华 ,白向飞 ,袁东营 ,张昀朋 ,杨承伟 . 准东煤田大井矿区B_1煤中水溶态离子分布及赋存特征. 煤炭转化. 2023(05): 1-11 .
    8. 王程,李博凡,吴璋,鲁晶津. 孔间电阻率监测在注浆效果检测的应用研究. 工矿自动化. 2023(10): 127-132+159 .
    9. 孙文斌,薛延东,杨辉,张晓波,孔令君. 工作面回采对断层裂隙带应力扰动规律及注浆加固机制研究. 岩石力学与工程学报. 2023(11): 2668-2681 .
    10. 苗彦平,蔚波,姬中奎,陈小绳,路波,薛小渊. 侏罗纪浅埋煤层开采典型水害模式及分区. 煤矿安全. 2021(08): 75-82 .
    11. 赵钟南,许洋铖,吴燕清,谭青青,康跃明,王耀. 井下瞬变电磁仪硬件对致灾水体分辨能力的评估. 煤田地质与勘探. 2021(04): 40-48 . 本站查看
    12. 史新国,翟勃,王卫龙. 基于大数据智能的煤矿水害预测数据建模研究. 自动化与仪器仪表. 2021(10): 37-40 .
    13. 周志清,李萍. 象山矿井涌水量相关因素分析. 陕西煤炭. 2020(03): 73-76+145 .
    14. 靳德武,李鹏,赵春虎,王玺瑞. 采场三维充水结构地质建模及动态可视化实现. 煤炭科学技术. 2020(07): 143-149 .
    15. 段建华. 煤层底板突水综合监测技术及其应用. 煤田地质与勘探. 2020(04): 19-28 . 本站查看
    16. 李超峰. 煤层顶板含水层涌水危险性评价方法. 煤炭学报. 2020(S1): 384-392 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (99) PDF downloads (9) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return