TAN Xinping, XU Zhangjian, WANG Xiaoqiu, WEI Yihua, DONG Pengwei. Geological hazard susceptibility assessment in thick loess and gob[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 112-120. DOI: 10.3969/j.issn.1001-1986.2017.05.020
Citation: TAN Xinping, XU Zhangjian, WANG Xiaoqiu, WEI Yihua, DONG Pengwei. Geological hazard susceptibility assessment in thick loess and gob[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 112-120. DOI: 10.3969/j.issn.1001-1986.2017.05.020

Geological hazard susceptibility assessment in thick loess and gob

Funds: 

Science and Technology Co-ordination Innovation Program Plan Project of Shaanxi Province(2014KTDZ03-01-01)

More Information
  • Received Date: November 06, 2016
  • Published Date: October 24, 2017
  • Distribution area of thick loess in Tongchuan City is cut by valleys, broken gully and gully loess, loess landslide and rock fall hazard develop extremely; also located in Weibei coalfield, coal mine goaf has caused many geological hazards such as ground fracture and collapse. The interaction of the two aggravates the occurrence of urban geo-hazard. Through 1:50 000 environment geological survey in Tongchuan City, based on information model, the evaluation index system of loess landslide, collapse and goaf deformation was established. The index of evaluation of geo-hazard susceptibility in complex area is divided into ground index, underground index and environmental factor index, the weight of index is 0.3, 0.3 and 0.4 respectively, after GIS analysis and calculation, we try to solve the complex and incompatible factors of disaster-causing factors in the evaluation of geological hazards. And it is considered that in the thick loess of coal-mined-out area, because of the existence of collapsible loess, the surface deformation is sensitive to the mining depth-thickness ratio, and the norm deformation characteristic value is clearly small.
  • [1]
    范立民,李勇,宁奎斌,等. 黄土沟壑区小型滑坡致大灾及其机理[J]. 灾害学,2015,30(3):67-70.

    FAN Limin,LI Yong,NING Kuibin,et al. Small landslide and disaster-causing mechanism in gully loess area[J]. Journal Catastrophology,2015,30(3):67-70.
    [2]
    贺卫中,向茂西,刘海南,等. 榆神府矿区地面塌陷特征及环境问题[J]. 煤田地质与勘探,2016,44(5):131-135.

    HE Weizhong,XIANG Maoxi,LIU Hainan,et al. Ground subsidence and its environment problems in Yushenfu mining area[J]. Coal Geology & Exploration,2016,44(5):131-135.
    [3]
    徐媛. 基于GIS的互助县地质灾害易发性评价研究[D]. 北京:中国地质大学,2013.
    [4]
    张黎,倪万魁. 宁夏彭阳县地质灾害[M]. 银川:宁夏人民出版社,2010.
    [5]
    刘海燕. 黄陵县地质灾害危险性评价[D]. 西安:长安大学,2011.
    [6]
    孟文强. 基于GIS和层次分析法的地质灾害危险性评价研究[D]. 西安:长安大学,2012.
    [7]
    郑长远. 层次分析法在地质灾害调查评价中的应用[D]. 北京:中国地质大学,2013.
    [8]
    宋高举,黄继超,吴东民. 基于斜坡单元划分法的汝阳县地质灾害易发性区划[J]. 地质灾害与环境保护,2015,26(1):103-107.

    SONG Gaoju,HUANG Jichao,WU Dongmin. Applying slope unit division method in Zoning Ruyang County in terms of geo-hazard proneness[J]. Journal of Geological Hazards Environment Preservation,2015,26(1):103-107.
    [9]
    魏刚,殷志强,史立群,等. 青海化隆县地质灾害易发性区划[J]. 中国地质灾害与防治学报,2013,24(1):86-92.

    WEI Gang,YIN Zhiqiang,SHI Liqun,et al. Zoning of geologicoal disasters of Hualong County in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2013,24(1):86-92.
    [10]
    梁明,王成绪. 厚黄土覆盖山区开采沉陷预计[J]. 煤田地质与勘探,2001,29(2):44-47.

    LIANG Ming,WANG Chengxu. Prediction of mining subsidence in mountain area overlaid with thick loess bed[J]. Coal Geology & Exploration,2001,29(2):44-47.
    [11]
    马路兴,吴朝阳,高艳卫. 老采空区地表剩余变形对城市轨道交通的影响评价[J]. 煤田地质与勘探,2013,41(1):40-49.

    MA Luxing,WU Chaoyang,GAO Yanwei. Evaluation of the influence of residual deformation above mined-out area on the stability of urban rail transit[J]. Coal Geology & Exploration,2013,41(1):40-49.
    [12]
    杨梅忠,梁明,巨天乙,等. 黄陵矿区地质灾害的现状与评价预测[J]. 煤田地质与勘探,2000,28(1):20-23.

    YANG Meizhong,LIANG Ming,JU Tianyi. et al. Situation analysis and prodiction of geological disasters in Huangling mining district,Shaanxi[J]. Coal Geology & Exploration,2000,28(1):20-23.
    [13]
    杜坤,李夕兵,刘科伟,等. 采空区危险性评价的综合方法及工程应用[J]. 中南大学学报(自然科学版),2011,42(9):2802-2811.

    DU Kun,LI Xibing,LIU Kewei,et al. Comprehensive evaluation of underground goaf risk and engineering application[J]. Journal of Central South University (Science and Technology),2011,42(9):2802-2811.
    [14]
    冯岩,王新民,程爱宝,等. 采空区危险性评价方法优化[J]. 中南大学学报(自然科学版),2013,44(7):2881-2888.

    FENG Yan,WANG Xinmin,CHENG Aibao,et al. Method optimization of underground goaf risk evaluation[J]. Journal of Central South University (Science and Technology),2013,44(7):2881-2888.
    [15]
    崔丽鹏,龙建辉,石文慧. 煤矿区黄土边坡特征分析及防治对策[J]. 煤田地质与勘探,2016,44(3):87-91.

    CUI Lipeng,LONG Jianhui,SHI Wenhui. The feature analysis and control measures of loess in coal mining area[J]. Coal Geology & Exploration,2016,44(3):87-91.
    [16]
    中国地质调查局西安地质调查中心,西北综合勘察设计研究院. 陕西1:5万铜川市幅(I49E006005)环境地质调查报告[R]. 2016.
    [17]
    国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S]. 北京:煤炭工业出版社,2000:78-116.
    [18]
    中华人民共和国国土资源部. 地质灾害危险性评估规范:DZ/T0286—2015[S]. 北京:地质出版社,2015:28.
  • Related Articles

    [1]WANG Qihang, LI Xu, GUO Qiang, KUAI Dawei. Numerical simulation on influence of skin effect on groundwater flow velocity in wellbore[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(3): 89-95. DOI: 10.12363/issn.1001-1986.23.07.0446
    [2]ZHAO Chunhu, JIN Dewu, HU Weiyue. Study on influence rules and evaluation criteria of groundwater affected by mining in unconsolidated aquifers in Shendong Bulianta coal mine[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 79-84. DOI: 10.3969/j.issn.1001-1986.2018.03.014
    [3]TIAN Guang, WANG Xiaobo. Numerical simulation of dewatering test of Ordovician limestone in Dongtan mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 61-64. DOI: 10.3969/j.issn.1001-1986.2014.03.014
    [4]ZHOU Jianjun, HU Weiyue, HOU Dayong. Numerical simulation of groundwater rebound process and water table value in abandoned mines[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 28-31. DOI: 10.3969/j.issn.1001-1986.2011.04.008
    [5]JI Ya-dong, CHAI Xue-zhou, LIU Qi-sheng, LI Jing-sheng. Current situation and existing problems of numerical simulation of groundwater flow in a large-scale area[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 32-36. DOI: 10.3969/j.issn.1001-1986.2009.05.008
    [6]HU Li-tang, CHEN Chong-xi, WANG Zhong-jing, WANG Xu-sheng. Researches on numerical algorithm of groundwater flowline[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(5): 33-36.
    [7]FENG Li-jun, LI Jing-sheng, GUO Xiao-shan, LIU Ying-feng. The design and realization of groundwater numerical modeling system[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(3): 33-35.
    [8]WEI Jia-hua, CHEN Liang-cheng, ZHANG Yuan-dong, ZHANG Jian-li. Study on 3-D visualization of groundwater simulated model[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(4): 33-36.
    [9]HU Hong-tao, LIN Xue-yu, CAI Qing-qin, JIANG Jun. Numerical simulation of groundwater for multi-layer aquifer system in Hami Basin[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 29-32.
    [10]Yao Leihua, Zhang Zhuanglu, Wang Xiaoming. DESIGN OF GROUNDWATER MODELING INFORMATION SYSTEM SOFTWARE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 41-43.
  • Cited by

    Periodical cited type(7)

    1. 海龙,谭世林,徐博. 紫花苜蓿和通奶草根土复合体的力学特性. 水土保持通报. 2023(06): 57-64 .
    2. 张玉,朱海丽,张珂,李国荣,刘亚斌. 3种滨河植物单根抗拉特性与其微观结构关系. 干旱区研究. 2022(02): 572-583 .
    3. 杨馥铖,刘昌义,胡夏嵩,李希来,付江涛,卢海静,申紫雁,许桐,闫聪,何伟鹏. 黄河源区不同退化程度高寒草地理化性质及复合体抗剪强度研究. 干旱区研究. 2022(02): 560-571 .
    4. 闫聪,胡夏嵩,李希来,刘昌义,卢海静,付江涛,许桐,申紫雁. 高寒矿区排土场植被恢复对边坡土体物理力学性质影响研究. 工程地质学报. 2022(02): 383-393 .
    5. 李叶鑫,吕刚,宁宝宽,陈四利,王道涵,魏忠平. 排土场土体裂缝区植被根系及抗剪强度分布特征. 水土保持研究. 2022(04): 108-114+120 .
    6. 乔千洛,杨文权,赵帅,傅文慧,柴港宁,鱼杨华,蔺宝珺,李希来,寇建村. 种草基质对木里矿区植被恢复效果的影响. 草业科学. 2022(09): 1782-1792 .
    7. 李凤明,白国良,韩科明. 木里矿区生态环境受损特征及治理方法研究. 煤炭工程. 2021(10): 116-121 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (43) PDF downloads (11) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return