ZHANG Huiyuan, GUAN Qiaoyan, LUO Xiaoyang, WU Rui, FU Min. Comparative analysis of statics and numerical simulation of buried gas pipeline crossing landslide[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 85-89,94. DOI: 10.3969/j.issn.1001-1986.2017.01.017
Citation: ZHANG Huiyuan, GUAN Qiaoyan, LUO Xiaoyang, WU Rui, FU Min. Comparative analysis of statics and numerical simulation of buried gas pipeline crossing landslide[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 85-89,94. DOI: 10.3969/j.issn.1001-1986.2017.01.017

Comparative analysis of statics and numerical simulation of buried gas pipeline crossing landslide

More Information
  • Received Date: August 01, 2015
  • Published Date: February 24, 2017
  • The paper, taking an engineering project of a pipeline crossing a landslide as background, used the software of finite element analysis ANSYS to set up the mechanical numerical simulation model of a pipeline crossing a landslide, and software FLAC3D to conduct simulation study of load and deformation of the pipeline, adopted analytical calculation method of statics to analyze and study the deformation and stress status of the pipeline, obtained the characteristcs such as strain and stress of the pipeline, as well as landslide displacement during the critical failure of the pipeline. The results of the two methods were identical, and showed that when the pipeline passed cross the landslide, the two ends of the pipeline were the most easy to failure. The deformation of the middle of the pipeline in the landslide was the biggest, and the deformation at two sides became smaller, the deflection deformation curve exhibited normal distribution. The stress at the two sides of the pipeline was the biggest,the middle of the pipeline was positively curved, the two sides of the pipeline were negatively curved, which was in accordance with the bending moment pattern of the uniform load beared on the fixed simple support beam at the two ends. To conduct the numerical simulation analysis on the basis of analysis of statistics has thereoretically guiding signficance for the research on the geological hazard of pipeline.
  • [1]
    吴锐,梅永贵,邓清禄,等. 滑坡作用下输气管道受力分析[J]. 建筑科学与工程学报,2014,31(3):105-111.

    WU Rui,MEI Yonggui,DENG Qinglu. et al. Stress analysis of buried gas pipeline under action of landslide[J]. Journal of Archi tecture and Civil Engineering,2014,31(3):105-111.
    [2]
    帅健,王晓霖,左尚志. 地质灾害作用下管道的破坏行为与防护对策[J]. 焊管,2008,31(5):9-15.

    SHUAI Jian,WANG Xiaolin,ZUO Shangzhi. Failure behovior of pipeline under action of geological hazard and protection countermeasures[J]. Welded Pipe,2008,31(5):9-15.
    [3]
    林冬,雷宇,许可方. 横向滑坡对管道的影响试验[J]. 石油学报,2011,32(4):728-732.

    LIN Dong,LEI Yu,XU Kefang. An experiment on the effect of a transverse landslide on piipelines[J]. Acta Petrolei Sinica, 2011,32(4):728-732.
    [4]
    郝建斌,刘建平,荆宏远,等. 横穿状态下滑坡对管道推力的计算[J]. 石油学报,2012,33(6):1093-1095.

    HAO Jianbin, LIU Jianping, JING Hongyuan, et al. A calculation of landslide thrust force to transverse pipelines[J]. Acta Petrolei Sinica,2012,33(6):1093-1095.
    [5]
    邓道明,周星海,申玉平. 横向滑坡过程中管道的内力和变形计算[J]. 油气储运,1998,17(7):18-21.

    DENG Daoming, ZHOU Xinghai, SHEN Yuping. Calculation of inner force and distortion of pipeline acrossing landslide[J]. Oil & Gas Storage and Transportation,1998,17(7):18-21.
    [6]
    王磊,邓清禄. 滑坡作用对输气管道危害的静力学分析[J]. 工程地质学报,2010,18(增1):340-346.

    WANG Lei,DENG Qinglu. Statics analysis on the harm of landslide for pipeline[J]. Journal of Engineering Geology,2010, 18(S1):340-346.
    [7]
    刘金涛. 管道横穿滑坡相互作用大尺度模型试验研究[D]. 成都:成都理工大学,2012.
    [8]
    杨俊,张峥,常波,等. 含缺陷管道悬空状态下的有限元建模[J]. 管道技术与设备,2009(2):1-3.

    YANG Jun,ZHANG Zheng,HANG Bo,et al. FEM model of suspended pipeline with defects[J]. Pipeline Technology and Equipment,2009(2):1-3.
    [9]
    姚安林,邢义锋,曾祥国,等. 滚石作用下埋地钢管道动力响应数值模拟分析[J]. 安全与环境学报,2009(3):122-125.

    YAO Anlin,XING Yifeng,ZENG Xiangguo,et al. Numerical simulation analysis of the dynamic response of buried steel pipeline to the impact of rolling stone[J]. Journil of Safety and Environment,2009(3):122-125.
    [10]
    由小川,庄茁,张效羽,等. 高压天然气管线在地质灾害下的失效分析[J]. 天然气工业,1999,19(4):77-81.

    YOU Xiaochuan,ZHUANG Zhuo,ZHANG Xiaoyu,et al. Failure analysis of high pressure gas pipeline under the geological disasters[J]. Natural Gas Industry,1999,19(4):77-81.
    [11]
    杨春林. 降雨致滑坡作用下山地城市埋地管道风险分析[D]. 重庆:重庆大学,2013.
    [12]
    LI Changdong, TANG Huiming, WANG Liangqing, et al. Study on load-sharing pattern of anti-slide piles control for landslides with pipeline crossing[C]//International Conference on Pipelines and Trenchless Technology,China,Wuhan,2012:389-399.
    [13]
    张东臣. 滑坡条件下埋地管道受力分析[J]. 石油规划设计, 2001,12(3):1-3.

    ZHANG Dongchen. Sterss analysis of buried pipeline under conditon of landslide[J]. Petroleum Planning & Engineering,2001, 12(3):1-3.
    [14]
    唐正浩,邓清禄,万飞,等. 滑坡作用下埋地管道的受力分析与防护对策[J]. 人民长江,2014,45(3):36-39.

    TANG Zhenghao, DENG Qinglu, WAN Fei, et al. Stress analysis and protection measures of buried pipeline under action of landslide[J]. Yangtze River,2014,45(3):36-39.
    [15]
    ZHU Hongxia, RANDOLPH M F. Large deformation finite-element analysis of submarine landslide interaction with embedded pipelines[J]. International Journal of Geomechanics, 2010, 10(4):145-152.
    [16]
    王联伟,张雷,董绍华,等. 基于土弹簧模型的管道滑坡力学影响因素分析[J]. 油气储运,2014,33(4):380-384.

    WANG Lianwei,ZHANG Lei,DONG Shaohua,et al. Analysis of mechanical influencing factors of landslide on pipeline on the basis of based on the soil spring model[J]. Oil & Gas Storage and Transportation,2014,33(4):380-384.
    [17]
    郭喜亮,张日向,姜萌. 埋设管线管土相互作用的有限元分析[J]. 中国水运,2011,11(12):224-226.

    GUO Xiliang,ZHANG Rixiang,JIANG Meng. Finite element analysis of interaction between buried pipeline and soil[J]. China Water Transport,2011,11(12):224-226.
    [18]
    黄崇伟. 沟埋式输油管道管土相互作用分析[J]. 公路工程, 2011,36(2):164-168.

    HUANG Chongwei. Analysis on the interaction between trenchburied oil pipeline and soil[J]. Highway Engineering,2011, 36(2):164-168.
  • Related Articles

    [1]WANG Enying, LIU Shanqing, GAO Rongbin, LIU Zhanjun. Transient electromagnetic exploration-based experiment on the relationship between the level of gas content and apparent resistivity in high rank coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 149-153,158. DOI: 10.3969/j.issn.1001-1986.2017.06.024
    [2]ZHU Xi'an, LI Feilong. A comparative study of the translation algorithm and kernel function algorithm for the large fixed loop[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(3): 120-123,127. DOI: 10.3969/j.issn.1001-1986.2016.03.023
    [3]FENG Bing, WANG Junlu, ZHOU Xiangwen, WANG Yu. Application of full-region apparent resistivity of CSAMT Ex in exploration[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 78-82. DOI: 10.3969/j.issn.1001-1986.2013.06.019
    [4]WU Junjie, ZHANG Jie, WANG Xingchun, DENG Xiaohong, YANG Yi. Calculation of fixed TEM response and apparent resistivity based on equivalent magnetic dipole[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(3): 68-71. DOI: 10.3969/j.issn.1001-1986.2013.03.016
    [5]SUN Qiang, FENG Yong, ZHU Shuyun, YANG Cai, XUE Lei. Analysis on the relation between resistivity and permeability of saturated rock during loading process[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(2): 86-90. DOI: 10.3969/j.issn.1001-1986.2012.02.021
    [6]WONG Ai-hua, LU Dong-hua, LIU Guo-xing. Definition of whole zone apparent resistivity for transient electromagnetic method of current dipole source[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 56-59.
    [7]YAN Liang-jun, XU Shi-zhe, HU Wen-bao, CHEN Qing-li, HU Jia-hua. A rapid resistivity imaging method for central loop transient electromagnetic sounding and its application[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(6): 58-61.
    [8]Chen Mingsheng, Tian Xiaobo. STUDY ON THE TRANSIENT ELECTROMAGNETIC (TEM) SOUNDING WITH ELECTRIC DIPOLE.IV.APPARENT RESISTIVITY IN TEM SOUNDING[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 52-55.
    [9]Sha Lei, Cai Bolin, Shi Xiaoman. THE APPARENT RESISTIVITY ANOMALY IN ELLIPSOIDAL MODEL UNDER CROSS-BOREHOLE CONDITION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(2): 45-49.
    [10]Lin Zhangyou, Wu Yuxia, Luo Dongshan, Lü Fulin. JOINT-INVERSION METHOD OF ONE-COMPONENT APPARENT RESISTIVITY-PHASE IN ERFQUENCY ELECTROMAGNETIC SOUNDING[J]. COAL GEOLOGY & EXPLORATION, 1993, 21(3): 46-52.
  • Cited by

    Periodical cited type(2)

    1. 王广君,段雪影,黄鲸珲,胡祥云. 基于蒙特卡洛方法的瞬变电磁接收机过渡过程研究. 工程地球物理学报. 2022(05): 585-594 .
    2. 曾庆宁,罗瀛,刘帅,龙超. 瞬变电磁全期视电阻率的弦截无限逼近算法. 石油地球物理勘探. 2019(06): 1371-1375+1177-1178 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (84) PDF downloads (6) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return