HUANG Ping, MENG Zhaoping, CHEN Huicheng, WANG Junyao. Distribution characteristic of gas content of coal reservoir and its methane carbon isotope in the Xishan block[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 75-79. DOI: 10.3969/j.issn.1001-1986.2017.01.015
Citation: HUANG Ping, MENG Zhaoping, CHEN Huicheng, WANG Junyao. Distribution characteristic of gas content of coal reservoir and its methane carbon isotope in the Xishan block[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 75-79. DOI: 10.3969/j.issn.1001-1986.2017.01.015

Distribution characteristic of gas content of coal reservoir and its methane carbon isotope in the Xishan block

Funds: 

National Natural Science Foundation of China(41372163)

More Information
  • Received Date: April 04, 2016
  • Published Date: February 24, 2017
  • The gas-bearing properties is an important parameter to determine the exploration and development of coalbed methane(CBM). The methane carbon isotope(δ13C1) can reflect the reservoir condition of CBM effectively. Based on the date of measured gas content from CBM well, the characteristic of gas content distribution in coalbed was analyzed, and the correlations and models of gas content, the burial depth of coalbed, geological structure were built. The characteristic of δ13C1 distribution was discussed and it had an indicative function to the distribution of gas-bearing properties. Findings show that, the gas content in the Xishan block is an average of 6.87 m3/t, 8.4 m3/t, 9.6 m3/t in the No.2, 8 and 9 coalbed respectively. The gas content was mainly influenced by burial depth of coalbed and structural configuration. The δ13C1 value of the No.8 in the study area ranges from -65.33‰ to -40.94‰ and its average is -45.88‰, and there was a positive correlation between coalbed gas content and δ13C1. δ13C1 generally is getting heavy with increase of gas content. δ13C1 is mainly controlled by the coalbed methane desorption-diffusion-transport effect and hydrodynamic condition.
  • [1]
    CHEN Y,TANG D Z,XU H,et al. Structural controls on coalbed methane accumulation and high production models in the eastern margin of Ordos basin,China[J]. Journal of Natural Gas Science and Engineering,2015,23,524-537.
    [2]
    YAO Y B,LIU D M,YAN T T. Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field,southeastern Ordos basin[J]. International Journal of Coal Geology,2014,121:148-159.
    [3]
    张小东,刘炎昊,张子戌,等. 焦作煤田煤储层物性特征及控气因素[J]. 天然气地球科学,2009,20(3):446-453.

    ZHANG Xiaodong,LIU Yanhao,ZHANG Zixu,et al. Coal reservoir properties and coalbed gas controlling factors of Jiaozuo coalfield[J]. Natural Gas Geoscience, 2009, 20(3):446-453.
    [4]
    赵丽娟,秦勇,林玉成. 煤层含气量与埋深关系异常及其地质控制因素[J]. 煤炭学报,2010,35(7):1165-1169.

    ZHAO Lijuan, QIN Yong, LIN Yuchen, et al. Abnormal relation and its geological controls of coalbed methane content to buried depth of coal seams[J]. Journal of China Coal Society,2010, 35(7):1165-1169.
    [5]
    王聪,吴财芳,欧正,等. 黔西织纳煤田少普矿区16号煤煤层气富集的地质控制因素[J]. 煤炭学报,2011,36(9):1486-1489.

    WANG Cong, WU Caifang, OU Zheng, et al. Factors controlling the accumulation research of CBM enrichment of No.16 coal seam in the Shaopu coal mining of Zhina coalfield on the west of Guizhou province[J]. Journal of China Coal Society,2011, 36(9):1486-1489.
    [6]
    陆小霞,黄文辉,徐延勇,等. 柿庄北深部煤层含气量变化特征[J]. 煤炭工程,2016,48(4):104-107

    . LU Xiaoxia,HUANG Wenhui,XU Yanyong,et al. Characteristics of gas content of deep coal seams in north Shizhuang district[J]. Coal Engineering,2016,48(4):104-107
    [7]
    李贵中,王红岩,吴立新,等. 煤层气向斜控气论[J]. 天然气工业,2005,25(1):26-28.

    LI Guizhong,WANG Hongyan,WU Lixin,et al. Theory of syncline-controlled coalbed methane[J]. Natural Gas Industry, 2005,25(1):26-28.
    [8]
    孙庆宇,张小东,赵家攀. 长治区块煤层气赋存特征及控气因素[J]. 中国煤炭地质,2016,28(7):11-15.

    SUN Qingyu,ZHANG Xiaodong,ZHAO Jiapan,et al. CBM hosting features and gas-controlling factors in Changzhi block[J]. Coal Geology of China,2016,28(7):11-15.
    [9]
    杨明显,李大华,陈飞. 重庆地区二叠系上统龙潭组/吴家坪组煤变质规律及其对煤层含气量的影响[J]. 中国煤炭地质, 2011,23(11):27-30.

    YANG Mingxian, LI Dahua, CHEN Fei. Upper Permian Longtan and Wujiaping Formations coal metamorphic pattern and its impact on coal seam gas content in Chongqing area[J]. Coal Geology of China,2011,23(11):27-30.
    [10]
    周三栋,刘大锰,邓邵华,等. 准噶尔盆地南缘硫磺沟煤层气富集主控地质因素及有利区优选[J]. 现代地质,2015,29(1):179-189.

    ZHOU Sandong,LIU Dameng,DENG Shaohua,et al. Factors affecting coalbed methane enrichment and CBM favorable area of Liuhuanggou area in the southern of Jungger basin[J]. Geoscience,2015,29(1):179-189.
    [11]
    孙斌,邵龙义,赵庆波,等. 海拉尔盆地煤层气成藏机理及勘探方向[J]. 天然气工业,2007,27(7):12-15.

    SUN Bin,SHAO Longyi,ZHAO Qingbo,et al. Reservoiring mechanism of coalbed methane and exploration direction in Hailaer basin[J]. Natural Gas Industry,2007,27(7):12-15.
    [12]
    陈振宏,宋岩. 高、低煤阶煤层气藏成藏过程及优势地质模型[J]. 新疆石油地质,2007,28(3):275-278.

    CHEN Zhenhong,SONG Yan. Formation processes and advantageous models for high-low-rank coalbed methane reservoirs[J]. Xinjiang Peiroleum Geology,2007,28(3):275-278.
    [13]
    JIANG J Y,CHENG Y P,WANG L,et al. Effect of magma intrusion on the occurrence of coal gas in the Wolonghu coalfield[J]. Mining Science and Technology,2011,21(6):737-741.
    [14]
    孟召平,张纪星,刘贺,等. 煤层甲烷碳同位素与含气性关系[J]. 煤炭学报,2014,39(8):1683-1690.

    MENG Zhaoping,ZHANG Jixing,LIU He,et al. Relationship between the methane carbon isotope and gas-bearing properties of coal reservoir[J]. Journal of China Coal Society, 2014, 39(8):1683-1690.
    [15]
    张建博,陶明信. 煤层甲烷碳同位素在煤层气勘探中的地质意义-以沁水盆地为例[J]. 沉积学报,2000,18(4):611-614.

    ZHANG Jianbo,TAO Mingxin. Geological significances of coal bed methane carbon isotope in coal bed methane exploration[J]. Acta Sedimentologica Sinica,2000,18(4):611-614.
    [16]
    李勇,汤达祯,方毅,等. 鄂尔多斯盆地东缘煤层气甲烷碳同位素分布及成因[J]. 中国科学:地球科学, 2014, 44(9):1940-1947.

    LI Yong,TANG Dazhen,FANG Yi,et al. Distribution of stable carbon isotope in coalbed methane from the east margin of Ordos Basin[J]. Science China:Earth Science, 2014, 44(9):1940-1947.
    [17]
    包建平,朱翠山,张秋茶. 塔里木盆地地库车坳陷不同构造单元天然气地球化学特征[J]. 石油与天然气地质,2007,28(5):664-668.

    BAO Jianping,ZHU Cuishan,ZHANG Qiucha,et al. Geochemical characteristics of natural gas from different structural units of the Kuqa depression,the Tarim basin[J]. Oil & Gas Geology,2007,28(5):664-668.
    [18]
    孟召平,田永东,李国富. 煤层气开发地质学理论与方法[M]. 北京:科学出版社,1987.
    [19]
    刘正. 山西省煤层气资源量及可采潜力[J]. 中国煤炭地质, 2014,26(9):17-23

    . LIU Zheng. CBM resources and exploitable potential in Shanxi Province[J]. Coal Geology of China,2014,26(9):17-23
    [20]
    王有智. 珲春盆地低煤阶煤层气富集规律[J]. 煤田地质与勘探,2015,43(3):28-32.

    WANG Youzhi. Low rank enrichment of coalbed methane in Hunchun basin[J]. Coal Geology & Exploration, 2015, 43(3):28-32.
    [21]
    WANG G,QIN Y,XIE Y W,et al. The division and geologic controlling factors of a vertical superimposed coalbed methane system in the northern Gujiao blocks,China[J]. Journal of Natural Gas Science and Engineering,2015,24,379-389.
  • Related Articles

    [1]ZHAO Tao, CUI Zhao, JIA Hailiang, YANG Guangyu. Characteristics of dynamic mode Ⅱ fracture of frozen saturated sandstones under varying low temperatures and loading rates[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 1-13. DOI: 10.12363/issn.1001-1986.25.02.0106
    [2]CHEN Luwang, WU Minghui, HOU Xiaowei, HU Yongsheng, ZHANG Miao, CAI Xinyue, YIN Xiaoxi, SHI Xiaoping. Spatiotemporal evolutionary patterns of the hydrochemistry of Jurassic conglomerate aquifers under the influence of curtain walls[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(1): 174-183. DOI: 10.12363/issn.1001-1986.24.10.0633
    [3]ZHANG Kun, SANG Shuxun, LIU Changjiang. Simulation experiment on the changes of CO2 burial process in deep coal seam[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 26-31. DOI: 10.3969/j.issn.1001-1986.2018.05.004
    [4]LIU Yanjie, LIU Chao, MA Bing, GUO Jing. Acidification experiment for enhancing the permeability of coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 46-49. DOI: 10.3969/j.issn.1001-1986.2016.02.009
    [5]LIN Yabing, MA Dongmin, LIU Yuhui, MA Wei, JIA Xuemei. Experiment of the influence of temperature on coalbed methane adsorption[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 24-28. DOI: 10.3969/j.issn.1001-1986.2012.06.006
    [6]LIU Hai-yan, WU Fa-quan, QI Sheng-wen, CHANG Zhong-hua, CUI Yong-jun. The dissolution process and the rock mass breakage of marlite slope in Three Gorges Reservoir Region[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 37-41.
    [7]ZHANG Hui. One of parameters reflecting coal reservoir permeability——block coal rate[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 21-22.
    [8]Sun Lijin, Liu Minglei, Shi Longqing. THE RELATIONSHIP BETWEEN GLIDING STRUCTURE AND WATER INRUSH FROM FLOOR[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(6): 44-46.
    [9]Zhao Zhigen. REGRESSION ANALYSIS MODEL OF RELATIVE GAS EMISSION RATE OF COALBEDS WITH SAME LEVEL[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 35-37.
    [10]Zhang Yongxiang, Xue Yuqun, Cao Yuqing. RESEARCH OF THE REACTION-TRANSPORTATION MODEL CONTROLLED UNDER THE DISSOLUTION AND PRECIPITATION OF CARBONATE[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 32-36.

Catalog

    Article Metrics

    Article views (73) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return