ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 66-72. DOI: 10.3969/j.issn.1001-1986.2016.02.013
Citation: ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 66-72. DOI: 10.3969/j.issn.1001-1986.2016.02.013

Dynamic stability model test of soil slope

Funds: 

National Natural Science Foundation of China(41302246)

More Information
  • Received Date: September 10, 2014
  • Available Online: October 22, 2021
  • This paper, based on a typical soil slopes prototype in Yunnan-Guizhou plateau, designed and completed test on a small vibrostand at scale of 1:6 by using four kinds of acceleration vibration wave input mode. The slope dynamic response characteristics, the deformation and failure law of slope were analyzed by FLAC3D. The results show that when the input acceleration is below certain threshold, the acceleration response of the whole slope is basic consistent in the same way, and amplification effect at each place does not increase obviously, when the input acceleration increases gradually ans is higher than the critical value, the predominant frequency of slope is fully stimulated and the acceleration response of each place increases, the slope is the most prone to deformation and damage. And the acceleration response has significant amplification effect along the direction of the slope height. The shear strain increment time course curve reflects the fact that in the process of the vibration failure, the trailing edge of the landslide mass is mainly effected by tensioning, the middle and the bottom of the slope are mainly effected by shear, and the variation of shear strain increment at the shear outlet particularly critical, its growth speed directly results in rapid decrease of shear strength. The slope deformation process is divided into four stages, and the failure mode is collapse-shear sliding.
  • Related Articles

    [1]LI Zhiwei, CHEN Deming, LIANG Xiangyang, WU Yonghui. Effect of hydrogeological conditions on the mining sequence in Menkeqing Mine[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 124-129. DOI: 10.3969/j.issn.1001-1986.2018.02.019
    [2]ZHANG Zhilong, GAO Yanfa, WU Qiang, Wei Simin. Classification and assessment of mine hydrogeological conditions of Yaoqiao coal mine in Datun[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(2): 67-71. DOI: 10.3969/j.issn.1001-1986.2013.02.016
    [3]MA Shu-zhi, JIA Hong-biao, TANG Hui-ming, HU Xin-li, LI Zhen-yu. Surveying hydrogeological conditions of landslide with nuclear magnetic resonance method[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(6): 33-36.
    [4]NIU Jian-li, DUAN Qi. Study on hydrogeological conditions in mining areas using hydro-geochemical methods[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(2): 39-42.
    [5]ZHANG Pei-he. Analyses on hydrogeological conditions for the development of coalbed methane in Hegang coal field[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(2): 42-43.
    [6]He Borong. THE COMPREHENSIVE ANALYSIS OF HYDROGEOLOGICAL CONDITIONS IN YANGZHUANG AND ZHUZHUANG COAL MINES[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(6): 40-42.
    [7]Jin Dewu. THE COMPREHENSIVE ANALYSIS METHOD OF HYDROGEOLOGY IN CONTROLLING COAL MINE WATER HAZARD[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 52-54.
    [8]Zhu Dizhi, Liu Yuanqing, Wang Chengxu. HYDROGEOLOGICAL CONDITION EVALUATION OF ERLANGSHAN TUNNEL SPOT[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(S1): 54-58.
    [9]Xing Xiangrong, Bu Changsen. MINE HYDROGEOLOGIC CONDITIONS PROSPECTED BY COMPREHENSIVE GEOPHYSICAL EXPLORATION[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(5): 4-7.
    [10]Wang Yonghong, Shen Wen. THE HYDROGEOLOGICAL CONDITION OF WEISHAN LAKE AND ITS EFFECT ON MINING UNDER WATER[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(2): 40-44.
  • Cited by

    Periodical cited type(11)

    1. 侯恩科,吴家镁,杨帆,张池. 基于鲸鱼优化算法-支持向量机判别模型的风化基岩富水性评价:以神府煤田张家峁煤矿为例. 科学技术与工程. 2025(01): 119-127 .
    2. 王海. 隐伏火烧区烧变岩含水层水害治理技术研究. 煤田地质与勘探. 2024(05): 88-97 . 本站查看
    3. 詹林,潘剑伟,高健,张成丽,杨晨,钱伦,槐玉鹿. 基于局部加密的非结构化网格SNMR方法二维Occam反演研究. 地球物理学进展. 2024(03): 1089-1101 .
    4. 薛建坤. 新疆阿艾矿区烧变岩水害特征及防治技术. 煤炭工程. 2024(11): 90-95 .
    5. 侯恩科,杨斯亮,苗彦平,车晓阳,杨磊,路波,谢晓深,王慧德,党冰. 基于Bayes判别分析模型的风化基岩富水性预测. 煤矿安全. 2023(01): 180-187 .
    6. 杨月堂. 煤矿顶部隔水性能多尺度评价. 能源与环保. 2023(02): 268-274 .
    7. 郭飞,侯克鹏,钟晓勇,陈俊彬,汪云川. 核磁共振技术在露天矿山地下水勘查中的应用. 中国矿业. 2023(05): 146-152+159 .
    8. 黄忠正,赵宝峰. 复合砂岩含水层下掘进巷道顶板富水异常区探查技术. 煤炭技术. 2023(07): 108-111 .
    9. 郭源. 地空电磁—核磁共振联测方法在地层富水性探测中的应用与研究. 山西煤炭. 2023(02): 89-95 .
    10. 吕振猛,孟凡贞,吕文茂,李梁宁. 改进的富水性预测评价方法. 煤炭技术. 2023(09): 152-155 .
    11. 赵宝峰,黄忠正,宗伟琴. 宁东煤田鸳鸯湖矿区煤层顶板水害防控技术与应用宁东煤田鸳鸯湖矿区煤层顶板水害防控技术与应用. 中国煤炭. 2022(03): 23-29 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return