Volume 44 Issue 2
Oct.  2021
Turn off MathJax
Article Contents
ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 66-72. DOI: 10.3969/j.issn.1001-1986.2016.02.013
Citation: ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 66-72. DOI: 10.3969/j.issn.1001-1986.2016.02.013

Dynamic stability model test of soil slope

Funds: 

National Natural Science Foundation of China(41302246)

More Information
  • Received Date: September 10, 2014
  • Available Online: October 22, 2021
  • This paper, based on a typical soil slopes prototype in Yunnan-Guizhou plateau, designed and completed test on a small vibrostand at scale of 1:6 by using four kinds of acceleration vibration wave input mode. The slope dynamic response characteristics, the deformation and failure law of slope were analyzed by FLAC3D. The results show that when the input acceleration is below certain threshold, the acceleration response of the whole slope is basic consistent in the same way, and amplification effect at each place does not increase obviously, when the input acceleration increases gradually ans is higher than the critical value, the predominant frequency of slope is fully stimulated and the acceleration response of each place increases, the slope is the most prone to deformation and damage. And the acceleration response has significant amplification effect along the direction of the slope height. The shear strain increment time course curve reflects the fact that in the process of the vibration failure, the trailing edge of the landslide mass is mainly effected by tensioning, the middle and the bottom of the slope are mainly effected by shear, and the variation of shear strain increment at the shear outlet particularly critical, its growth speed directly results in rapid decrease of shear strength. The slope deformation process is divided into four stages, and the failure mode is collapse-shear sliding.
  • Cited by

    Periodical cited type(25)

    1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 .
    2. 张雪莲. 潞安矿区矿井水害及防治措施分析. 华北自然资源. 2025(01): 14-16+20 .
    3. 连会青,晏涛,尹尚先,徐斌,康佳,周旺,闫国成. 基于透明水文地质模型的工作面顶板水害预警研究. 煤炭科学技术. 2025(01): 259-271 .
    4. 牛亚豪,王畅,刘佳佳. 基于高精度差分定位法的水文测量自动化报警系统设计. 自动化与仪器仪表. 2024(01): 231-234 .
    5. 苏雄,李小龙,贺杰伟. 基于三维GIS的煤矿数据集成自动化监测系统. 自动化与仪表. 2024(03): 121-125 .
    6. 郝宪杰,李航,赵毅鑫,杨怀翔,杨波,刘科峰,李宜家. 基于日累积微震指标与水位关联效应的底板突水预警方法与应用. 岩石力学与工程学报. 2024(09): 2125-2139 .
    7. 曾一凡,于超,武强,赵菱尔,尹尚先,张博成,刘泽洋,崔雅帅,阚雪冬,黄浩. 煤矿防治水“三区”划分方法及其水害防治意义. 煤炭学报. 2024(08): 3605-3618 .
    8. 宗伟琴. 煤矿水害监测预警GIS平台研发及应用. 能源科技. 2024(05): 28-33 .
    9. 姚有利,寇杰,张孟浩. 基于博弈论组合赋权-TOPSIS的煤矿“一通三防”风险评估. 矿业安全与环保. 2024(06): 71-78 .
    10. 赵群,郝韶嵩. 水害风险预警系统在皖北煤电集团的设计研究. 煤炭与化工. 2023(02): 33-37 .
    11. 丁莹莹,卜昌森,连会青,尹尚先,徐斌,张丐卓,姚辉,董其金. 基于仿真平台的矿井突水淹没路径和逃生路径规划. 煤矿安全. 2023(05): 20-26 .
    12. 董书宁. 人工智能技术在煤矿水害防治智能化发展中的应用. 煤矿安全. 2023(05): 1-12 .
    13. 袁利伟,龙皓楠,李斌,李延林,曹浪,辛岩. 基于HMM算法的矿山水灾害链复杂演化网络模型构建及应用. 化工矿物与加工. 2023(08): 47-55 .
    14. 曾一凡,武强,赵苏启,苗耀武,张晔,梅傲霜,孟世豪,刘晓秀. 我国煤矿水害事故特征、致因与防治对策. 煤炭科学技术. 2023(07): 1-14 .
    15. 尹尚先,徐斌,尹慧超,曹敏,丁莹莹,梁满玉. 矿井水防治学科基本架构及内涵. 煤炭科学技术. 2023(07): 24-35 .
    16. 邱浩,李宏杰,李文,李江华,杜明泽,姜鹏. 煤矿水害智能预警系统关键架构及模型研究. 煤炭科学技术. 2023(07): 197-206 .
    17. 李鑫,孙亚军,徐智敏,陈歌. 矿山采动突水危险源划分与致灾危险性评价研究. 煤炭工程. 2023(09): 108-115 .
    18. 张党育,武斌,贾靖,赵立松,李玉宝. 基于微震数据及模型的煤矿水害“双驱动”预警体系构建与应用. 煤炭科学技术. 2023(S1): 242-255 .
    19. 张志武. 高密度电阻率法在承压水导升高度探测中的应用. 煤. 2022(06): 71-72+95 .
    20. 宋容. 基于多层关联规则算法的煤矿突出预警模型. 能源与环保. 2022(06): 300-305 .
    21. 许进鹏,周宇,浦早红,庞思远. 离层积水量估算方法及离层突水预测——以陕西招贤煤矿1304工作面突水为例. 煤炭学报. 2022(08): 3083-3090 .
    22. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 .
    23. 卓聪志. 首采区域内上覆含水层的富水特征及采区涌水量计算. 山西化工. 2022(07): 112-114 .
    24. 隋旺华. 矿山安全地质学:综述. 工程地质学报. 2021(04): 901-916 .
    25. 薛峰峰. 低位岩巷穿层探放技术在采空区水害治理中的应用. 陕西煤炭. 2021(05): 155-158 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return