Citation: | YIN Haiyang,CHEN Tongjun,SONG Xiong,et al. Methods for predicting the thickness of coal seams based on seismic attribute optimization and machine learning[J]. Coal Geology & Exploration,2023,51(5):164−170. DOI: 10.12363/issn.1001-1986.22.10.0801 |
Accurate location of coal seams is the key technology of unattended mining and predicting the thickness of coal seams is an important content in the seismic interpretation of coalfields. This study constructed a forward model involving wedge-shaped coal seams by referencing the actual thickness and physical properties of strata. Moreover, this study compared and analyzed the effects of signal-to-noise ratio (SNR) and regression methods on the prediction of the coal seams’ thickness through the forward modeling of seismic profiles and the extraction and optimization of seismic attributes. The results of this study are as follows: (1) Some seismic attributes were strongly correlated with, and can be used to predict, the thickness of coal seams; (2) The information redundancy among seismic attributes cannot be ignored. However, there was no essential difference between the seismic attributes optimized using principal component analysis (PCA) and multi-dimensional scaling (MDS); (3) When the SNR was low (10 dB), the root-mean-square (RMS) error of the prediction results of different algorithms was in the order of random forest regression (RFR, 1.07)< support vector machine regression (SVR, 1.15)< multivariate linear regression (MLR, 1.84); (4) When the SNR was high (25 dB), the RMS error of the prediction results of these algorithms was in the order of SVR (0.05)<RFR (0.11)<MLR (0.20); (5) The SNR of the input data had significant impacts on the prediction of the coal seams’ thickness, and a higher SNR corresponded to better prediction performance. Coal thickness prediction method based on seismic attribute optimization and SVR is an effective way to realize high-precision interpretations of the coal seams’ thickness.
[1] |
葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28−46.
GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28−46.
|
[2] |
张运龙,丁峰,尹成,等. 基于楔形模型的波形结构属性特征研究[J]. 物探化探计算技术,2018,40(5):587−593. DOI: 10.3969/j.issn.1001-1749.2018.05.05
ZHANG Yunlong,DING Feng,YIN Cheng,et al. Study on the characteristics of waveform structure attributes based on wedge model[J]. Computing Techniques for Geophysical and Geochemical Exploration,2018,40(5):587−593. DOI: 10.3969/j.issn.1001-1749.2018.05.05
|
[3] |
路拓,侯恩科,牛超,等. 基于Love型槽波频散特性的工作面煤厚解释方法[J]. 煤炭学报,2022,47(8):2992−3000. DOI: 10.13225/j.cnki.jccs.WX22.0865
LU Tuo,HOU Enke,NIU Chao,et al. Interpretation method of coal seam thickness based on dispersion characteristics of Love channel waves[J]. Journal of China Coal Society,2022,47(8):2992−3000. DOI: 10.13225/j.cnki.jccs.WX22.0865
|
[4] |
JI Guangzhong,LI Hui,WEI Jiuchuan,et al. Preliminary study on wave field and dispersion characteristics of channel waves in VTI coal seam media[J]. Acta Geophysica,2019,67(5):1379−1390. DOI: 10.1007/s11600-019-00326-x
|
[5] |
SUO Chonghui, CHANG Suoliang, PENG Shimi, et al. Study and application of seismic attributes on coal seam thickness prediction[C]//Applied Mechanics and Materials. Switzerland: Trans Tech Publications Ltd., 2012.
|
[6] |
WANG Man, WANG Yingwei, ZHANG Dongming. Research on evaluation technology of gas anomaly zone in Xiadian Mine based on 3D seismic monitoring technology[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1–20.
|
[7] |
WU Yanhui,WANG Wei,ZHU Guowei,et al. Application of seismic multiattribute machine learning to determine coal strata thickness[J]. Journal of Geophysics and Engineering,2021,18(6):834−844. DOI: 10.1093/jge/gxab054
|
[8] |
WIDESS M B. How thin is a thin bed?[J]. Geophysics,2012,38(6):1176−1180.
|
[9] |
ZOU Guangui,XU Zhiliang,PENG Suping,et al. Analysis of coal seam thickness and seismic wave amplitude:A wedge model[J]. Journal of Applied Geophysics,2018,148:245−255. DOI: 10.1016/j.jappgeo.2017.11.013
|
[10] |
谷琼. 面向非均衡数据集的机器学习及在地学数据处理中的应用[D]. 武汉: 中国地质大学, 2009.
GU Qiong. Research of machine learning on imbalanced data sets and its application in geosciences data processing[D]. Wuhan: China University of Geosciences, 2009.
|
[11] |
TROCCOLI E B,CERQUEIRN A G,LEMOS J B,et al. K−means clustering using principal component analysis to automate label organization in multi−attribute seismic facies analysis[J]. Journal of Applied Geophysics,2022,198:104555. DOI: 10.1016/j.jappgeo.2022.104555
|
[12] |
WANG Zhiguo,GAO Dengliang,LEI Xiaolan,et al. Machine learning–based seismic spectral attribute analysis to delineate a tight–sand reservoir in the Sulige gas field of central Ordos Basin,western China[J]. Marine and Petroleum Geology,2020,113:104136. DOI: 10.1016/j.marpetgeo.2019.104136
|
[13] |
邹冠贵,任珂,吉寅,等. 基于主成分分析和最近邻算法的断层识别研究[J]. 煤田地质与勘探,2021,49(4):15−23. DOI: 10.3969/j.issn.1001-1986.2021.04.003
ZOU Guangui,REN Ke,JI Yin,et al. Fault recognition based on principal component analysis and K−nearest neighbor algorithm[J]. Coal Geology & Exploration,2021,49(4):15−23. DOI: 10.3969/j.issn.1001-1986.2021.04.003
|
[14] |
HARMON N,RYCHERT C,COLLIER J,et al. Mapping geologic features onto subducted slabs[J]. Geophysical Journal International,2019,219(2):725−733. DOI: 10.1093/gji/ggz290
|
[15] |
王遥平. 基于化学计量学的油气源对比与实例研究[D]. 广州: 中国科学院大学(广州地球化学研究所), 2019.
WANG Yaoping. Oil– and gas–source rock correlations and case studies based on chemometrics[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2019.
|
[16] |
LIN Xiaobo,ZHANG Pingsong,MENG Fanbin,et al. A coal seam thickness prediction model based on CPSAC and WOA–LS–SVM:A case study on the ZJ Mine in the Huainan Coalfield[J]. Energies,2022,15(19):7324. DOI: 10.3390/en15197324
|
[17] |
刘晓明,王新,徐慧. 基于多目标随机森林的煤层厚度同步预测方法[J]. 计算机工程与设计,2021,42(4):1116−1121.
LIU Xiaoming,WANG Xin,XU Hui. Synchronous prediction method for coal thickness based on multi−objective random forest[J]. Computer Engineering and Design,2021,42(4):1116−1121.
|
[18] |
HUANG Yaping,YAN Lei,CHENG Yan,et al. Coal thickness prediction method based on VMD and LSTM[J]. Electronics,2022,11(2):232. DOI: 10.3390/electronics11020232
|
[19] |
李启成,郭雷,孙颍川,等. 地震属性融合技术在煤层厚度预测中的研究[J]. 地球物理学进展,2017,32(5):2014−2020. DOI: 10.6038/pg20170521
LI Qicheng,GUO Lei,SUN Yingchuan,et al. Seismic attributes fusion and its research in predicting thickness of coal[J]. Progress in Geophysics,2017,32(5):2014−2020. DOI: 10.6038/pg20170521
|
[20] |
梁耍,王世博,谢洋,等. 基于LSTM的煤层厚度动态预测方法研究[J]. 煤炭科学技术,2021,49(增刊1):150−157.
LIANG Shua,WANG Shibo,XIE Yang,et al. Dynamic prediction method of coal seam thickness based on LSTM[J]. Coal Science and Technology,2021,49(Sup.1):150−157.
|
[21] |
WANG Xin,LI Yan,CHEN Tongjun,et al. Quantitative thickness prediction of tectonically deformed coal using extreme learning machine and principal component analysis:A case study[J]. Computers & Geosciences,2017,101:38−47.
|
[22] |
WANG Xin,CHEN Tongjun,XU Hui. Thickness distribution prediction for tectonically deformed coal with a deep belief network:A case study[J]. Energies,2020,13(5):1169. DOI: 10.3390/en13051169
|
[23] |
RODEN R,SMITH T,SACREY D. Geologic pattern recognition from seismic attributes:Principal component analysis and self−organizing maps[J]. Interpretation,2015,3(4):SAE59−SAE83. DOI: 10.1190/INT-2015-0037.1
|
[24] |
TORGERSON W S. Multidimensional scaling:I. Theory and method[J]. Psychometrika,1952,17(4):401−419. DOI: 10.1007/BF02288916
|
[25] |
KARAKUS M,KUMRAL M,KILIC O. Predicting elastic properties of intact rocks from index tests using multiple regression modelling[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2):323−330. DOI: 10.1016/j.ijrmms.2004.08.005
|
[26] |
CHERKASSKY V. The nature of statistical learning theory~[J]. IEEE Transactions on Neural Networks,1997,8(6):1564. DOI: 10.1109/TNN.1997.641482
|
[27] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5–32.
|
[1] | LIU Kang, NING Shuzheng, CAO Daiyong, WU Guoqiang, WANG Lu, LIN Zhongyue, WANG Anmin. A preliminary evaluation method for coal-based graphite[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(4): 1-10. DOI: 10.12363/issn.1001-1986.22.10.0809 |
[2] | LONG Weicheng, SUN Siqing, LI Guofu. Evaluation method of coalbed methane surface drainage effect in coal mines——Take a block of Sihe mine as an example[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(6): 55-58,63. DOI: 10.3969/j.issn.1001-1986.2016.06.010 |
[3] | LUO Bing, XIE Xiaoguo. Quantitative evaluation of reservoir heterogeneity of coal seam by using logging data[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 155-159. DOI: 10.3969/j.issn.1001-1986.2016.05.030 |
[4] | FANG Jiahu, LI Zhi, ZHANG Yang, WU Xiaojun, WANG Haojie, LYU Junwei. Comprehensive evaluation of geological structure complexity of 8th seam in Luling mine[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 22-26,30. DOI: 10.3969/j.issn.1001-1986.2016.01.004 |
[5] | CUI Lianxun, SHAO Xianjie, DONG Xinxiu, WU Ze, LI Shicai, WANG Haiyang, XU Hao. Evaluation index system and method of coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 26-30. DOI: 10.3969/j.issn.1001-1986.2014.03.006 |
[6] | SHU Jiansheng, JIA Jiancheng, WANG Yaozhong, GONG Wen. Quantitative evaluation of geological structure complexity: with Guobei coal mine as example[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(6): 22-26. DOI: 10.3969/j.issn.1001-1986.2010.06.005 |
[7] | LE Qi-lang, YANG Wei-min, CHEN Ping, CHENG Hai-yan. The research of quantitative evaluation of seam-gliding structure and its application in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 22-25. DOI: 10.3969/j.issn.1001-1986.2009.06.006 |
[8] | HU Shao-long, ZHU Wen-wei, CHEN Bo-nian, YU Xian-zhong. Quantitative and comprehensive evaluation of coal resource exploration types in Huainan-Huaibei area[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(6): 7-11. |
[9] | ZHU Bao-long, XIA Yu-cheng. Quantitative evaluation of mining structure based on the artificial neural network[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 15-17. |
[10] | LIU Xiaoyan, LU Shuangfang, YI Yingjie. QUANTITATIVE EVALUATION OF HYDROCARBON GENERATION AND EXPULTION IN COAL BEARING MEASURES IN HAILAER BASIN[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(6): 17-20. |
1. |
吴见,张松航,贾腾飞,晁巍巍,彭文春,李世龙. 深部煤层钻孔保压取心流程分析及含气量测定方法. 石油实验地质. 2025(01): 163-172 .
![]() | |
2. |
闫霞,徐凤银,熊先钺,王峰,李春虎,张纪远,徐博瑞,成前辉,胡雄,朱学光,梁为,袁朴,冯延青,魏振吉. 深部煤层气勘探开发关键实验技术及发展方向. 煤田地质与勘探. 2025(01): 128-141 .
![]() | |
3. |
刘伟,韩冬阳,徐浩,周禹军,李天男. 煤层双重孔隙瓦斯输运机理及模型评估. 煤炭科学技术. 2025(02): 151-162 .
![]() | |
4. |
高明忠,宋杰,崔鹏飞,李永程,李聪,李佳南,刘贵康,游镇西,史晓军. 深部煤层原位保压保瓦斯取心技术装备及初步应用. 煤炭科学技术. 2024(04): 143-154 .
![]() | |
5. |
陈绍杰,周婷,黄跃辉,徐阿猛,王智正. “封-开-封”型密封取样装置及试验. 华北科技学院学报. 2024(03): 1-5 .
![]() | |
6. |
Peng-Fei Cui,De-Lei Shang,Peng Chu,Ju Li,Da-Li Sun,Tian-Yu Wang,Ming-Zhong Gao,He-Ping Xie. Optimal depth of in-situ pressure-preserved coring in coal seams considering roadway excavation and drilling disturbance. Petroleum Science. 2024(05): 3517-3534 .
![]() |
|
7. |
关建闯,安丰华,花春蕾. 复杂地层条件下煤层瓦斯压力免封孔测试方法应用研究. 能源与环保. 2024(12): 104-106+112 .
![]() | |
8. |
翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 .
![]() | |
9. |
陈学习. 井下煤层瓦斯压力与含量直接测定技术研究进展. 华北科技学院学报. 2023(05): 1-14 .
![]() |