YANG Aiwu,YANG Shaopeng,QI Jiejie. Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear[J]. Coal Geology & Exploration,2022,50(10):76−84. DOI: 10.12363/issn.1001-1986.22.03.0121
Citation: YANG Aiwu,YANG Shaopeng,QI Jiejie. Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear[J]. Coal Geology & Exploration,2022,50(10):76−84. DOI: 10.12363/issn.1001-1986.22.03.0121

Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear

More Information
  • Received Date: March 02, 2022
  • Revised Date: August 26, 2022
  • Available Online: September 29, 2022
  • Stress relaxation often occurs in the saturated soft clay with poor water permeability under the actual working condition at fast construction speed (fast loading rate), which brings huge hidden dangers to the safe operation of engineering practice. Herein, the unconsolidated undrained triaxial shear test was performed based on the soft dredger fill in Tianjin Binhai using the WF stress path triaxial instrument, and the influence law of such factors as the different initial strain, confining pressure, shear rate, sampling depth and structural properties of the soft dredger fill on its stress relaxation characteristics was analyzed accordingly. According to the test results, the stress relaxation process of soft dredger fill in coastal region of Tianjin under different test conditions can be divided into the fast, slow and stable stages. The rate of stress relaxation increases with the increasing initial strain and sampling depth, but slightly affected by the confining pressure and shear rate. Besides, the enhancement of soil structure will significantly increase the rate of stress relaxation, thus exacerbating the stress relaxation. Moreover, it is determined through comparative analysis that the power function model is more suitable to describe the change law of stress relaxation of soft dredger fill under different test conditions. Generally, the research results have important practical significance for the safe construction and operation of soft dredger fill site in coastal region of Tianjin.

  • [1]
    杜东菊, 杨爱武, 刘举, 等. 天津滨海吹填土[M]. 北京: 科学出版社, 2010.
    [2]
    杨爱武,郭飞,杜东菊. 考虑结构性与排水条件的吹填软土的流变特性[J]. 煤田地质与勘探,2013,41(2):54−59.

    YANG Aiwu,GUO Fei,DU Dongju. Rheological characteristics considering structure and drainage condition of the soft dredger fill[J]. Coal Geology & Exploration,2013,41(2):54−59.
    [3]
    杨爱武,刘琦,闫澍旺,等. 结构性吹填软土流变等时曲线研究[J]. 煤田地质与勘探,2012,40(6):58−62.

    YANG Aiwu,LIU Qi,YAN Shuwang,et al. Rheological isochronous curve of the structural soft dredger fill[J]. Coal Geology & Exploration,2012,40(6):58−62.
    [4]
    孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.
    [5]
    王念秦,罗东海,姚勇,等. 马兰黄土动强度及其微结构变化实验[J]. 工程地质学报,2011,19(4):467−471. DOI: 10.3969/j.issn.1004-9665.2011.04.004

    WANG Nianqin,LUO Donghai,YAO Yong,et al. Dynamic strength and microstructure change of Malan loess under triaxal cyclic loading[J]. Journal of Engineering Geology,2011,19(4):467−471. DOI: 10.3969/j.issn.1004-9665.2011.04.004
    [6]
    MURAYAMA S. Rheological properties of clay[J]. Journal of the Society of Materials Science Japan,1963,12(113):72−78. DOI: 10.2472/jsms.12.72
    [7]
    LADANYI B,MELOUKI M. Determination of creep properties of frozen soils by means of the borehole stress relaxation test[J]. Canadian Geotechnical Journal,1993,30(1):170−186. DOI: 10.1139/t93-015
    [8]
    吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州: 兰州大学出版社, 1994.
    [9]
    彭芳乐,李福林,李建中,等. 加载速率变化条件下砂土的黏塑特性及本构模型[J]. 岩石力学与工程学报,2008,27(8):1576−1585. DOI: 10.3321/j.issn:1000-6915.2008.08.006

    PENG Fangle,LI Fulin,LI Jianzhong,et al. Viscoplastic behaviors and constitutive modeling of sands under change of loading rates[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1576−1585. DOI: 10.3321/j.issn:1000-6915.2008.08.006
    [10]
    AKAI K,ADACHI T,ANDO N. Existence of a unique stress−strain−time relation of clays[J]. Soils and Foundations,1975,15(1):1−16. DOI: 10.3208/sandf1972.15.1
    [11]
    ODA Y,MITACHI T. Stress relaxation characteristics of saturated clays[J]. Soils and Foundations,1988,28(4):69−80. DOI: 10.3208/sandf1972.28.4_69
    [12]
    张春晓,肖宏彬,包嘉邈,等. 膨胀土应力松弛的分数阶模型[J]. 岩土力学,2018,39(5):1747−1752.

    ZHANG Chunxiao,XIAO Hongbin,BAO Jiamiao,et al. Stress relaxation model of expansive soils based on fractional calculus[J]. Rock and Soil Mechanics,2018,39(5):1747−1752.
    [13]
    崔德山,陈琼,项伟,等. 黄土坡滑坡饱和滑带土三轴压缩应力松弛试验研究[J]. 岩土力学,2018,39(增刊2):209−216.

    CUI Deshan,CHEN Qiong,XIANG Wei,et al. Experimental study of stress relaxation characteristics of saturated sliding zone soils of Huangtupo landslide under triaxial compression[J]. Rock and Soil Mechanics,2018,39(Sup.2):209−216.
    [14]
    ZOLOTAREVSKAYA D I. Mathematical modeling of relaxation processes in soils[J]. Eurasian Soil Science,2003,36(4):388−397.
    [15]
    王松鹤,齐吉琳. 高温冻土松弛特性试验研究[J]. 岩土力学,2012,33(6):1660−1666. DOI: 10.3969/j.issn.1000-7598.2012.06.010

    WANG Songhe,QI Jilin. Experimental study of relaxation characteristics of warm permafrost[J]. Rock and Soil Mechanics,2012,33(6):1660−1666. DOI: 10.3969/j.issn.1000-7598.2012.06.010
    [16]
    肖宏彬,贺聪,周伟,等. 南宁膨胀土非线性剪切应力松弛特性试验[J]. 岩土力学,2013,34(增刊1):22−27. DOI: 10.16285/j.rsm.2013.s1.072

    XIAO Hongbin,HE Cong,ZHOU Wei,et al. Experimental study of nonlinear shear stress relaxation characteristics of Nanning expansive soil[J]. Rock and Soil Mechanics,2013,34(Sup.1):22−27. DOI: 10.16285/j.rsm.2013.s1.072
    [17]
    王志俭,殷坤龙,简文星,等. 万州安乐寺滑坡滑带土松弛试验研究[J]. 岩石力学与工程学报,2008,27(5):931−937. DOI: 10.3321/j.issn:1000-6915.2008.05.008

    WANG Zhijian,YIN Kunlong,JIAN Wenxing,et al. Experimental research on stress relaxation of slip zone soils for Anlesi landslide in Wanzhou City[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(5):931−937. DOI: 10.3321/j.issn:1000-6915.2008.05.008
    [18]
    田光辉,沈明荣,李彦龙,等. 锯齿状结构面剪切松弛特性及本构方程参数分析[J]. 工业建筑,2016,46(9):87−92.

    TIAN Guanghui,SHEN Mingrong,LI Yanlong,et al. Shear relaxation characteristics and parametric analysis of shear relaxation constitutive equation of serrated rock mass discontinuity[J]. Industrial Construction,2016,46(9):87−92.
    [19]
    ALEXANDRE G,MARTINS I. Stress relaxation under various stress and drainage conditions[J]. Archive Ouverte HAL,2012:1−54.
    [20]
    TONG Fei,YIN Jianhua. Experimental and constitutive modeling of relaxation behaviors of three clayey soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(11):1973−1981. DOI: 10.1061/(ASCE)GT.1943-5606.0000926
    [21]
    高彦斌,刘佳丹. 黏性土一维松弛及其与次压缩的关系[J]. 岩土工程学报,2019,41(增刊2):49−52.

    GAO Yanbin,LIU Jiadan. One–dimensional stress relaxation of cohesive soils and its relationship with secondary compression[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup.2):49−52.
    [22]
    中华人民共和国水利部, 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
    [23]
    杨爱武,苟乐宇,张振东. 循环荷载作用下结构性软土微结构演化特性试验研究[J]. 岩石力学与工程学报,2017,36(1):234−242.

    YANG Aiwu,GOU Leyu,ZHANG Zhendong. Experimental research on microstructure characteristics of structural soft clays under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(1):234−242.
    [24]
    杨爱武,张卫. 基于两种波形作用结构性软黏土动力特性试验研究[J]. 工程地质学报,2017,25(6):1395−1404.

    YANG Aiwu,ZHANG Wei. Experimental study on dynamic properties of structural soft clay based on two kinds of waveform[J]. Journal of Engineering Geology,2017,25(6):1395−1404.
    [25]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
  • Related Articles

    [1]ZHOU Lang, MA Zhenqian, HUANG Qingrong, SHUAI Yunlin, ZHANG Jimin, LIU Rongke. A nanoindentation-based study on the micromechanical properties of red shales[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(11): 96-107. DOI: 10.12363/issn.1001-1986.24.06.0370
    [2]OUYANG Zhenhua, LIU Yang, LI Chunlei, SHI Qingwen, LI Wenshuai, YI Haiyang, QIN Hongyan, ZHANG Ningbo. An experimental study of the evolutionary patterns of mechanical properties of coals under multiple mining disturbances[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(10): 72-84. DOI: 10.12363/issn.1001-1986.24.04.0274
    [3]ZHAO Huanshuai, PAN Yongtai, QIAO Xin, WANG Xingyu, YU Chao, HUANG Jiacheng. Fracturing evolutionary law and energy utilization efficiency of green sandstones under different loading rates[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(6): 69-78. DOI: 10.12363/issn.1001-1986.24.03.0152
    [4]ZHANG Heyong, WANG Xuedong, ZHU Yongdong, WANG Haipeng, QI Lihui. Mechanical properties and strength deterioration mechanism of soil in inner dump of open-pit coal mine under the action of freeze-thaw cycles[J]. COAL GEOLOGY & EXPLORATION.
    [5]ZHANG Heyong, WANG Xuedong, ZHU Yongdong, WANG Haipeng, QI Lihui. Mechanical properties and strength deterioration mechanism of soil in inner dump of open-pit coal mine under the action of freeze-thaw cycles[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(11): 119-131. DOI: 10.12363/issn.1001-1986.23.04.0210
    [6]HU Xin, SUN Qiang, YAN Changgen, ZHAO Chunhu, WANG Shaofei. Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(4): 76-84. DOI: 10.12363/issn.1001-1986.22.06.0496
    [7]ZHANG Yin, LI Zhe, SONG Shikang, ZHAO Yi, LI Hao. Mechanical properties and acoustic emission characteristics of sandstone under natural and saturated conditions[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(2): 98-105. DOI: 10.12363/issn.1001-1986.21.06.0341
    [8]LI Qiang, WANG Yansen, WANG Chunlin, XU Shengji, FAN Zhiqiang. Performance deterioration law of retarded cement slurry and its mixed slurry in freezing borehole mud replacement[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 182-189. DOI: 10.3969/j.issn.1001-1986.2021.05.020
    [9]DENG Niandong, YAO Ting, SHANG Hui, LIU Donghai. Surface subsidence law caused by fully mechanized caving mining under railway[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 121-125,134. DOI: 10.3969/j.issn.1001-1986.2019.06.019
    [10]XU Shuanhai, TIAN Yanzhe, LI Ning. Variation of physical and mechanical characteristics of coarse sandstone during freezing and thawing cycles[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 102-107. DOI: 10.3969/j.issn.1001-1986.2016.05.019
  • Cited by

    Periodical cited type(3)

    1. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    2. 龙钰,韩文梅,关学锋,何天明,杜龙飞,葛彦鑫. 酸性矿井水作用下砂岩冲击特性变化分析. 中北大学学报(自然科学版). 2022(05): 460-466 .
    3. 王腾飞,蔺文豪,秦哲,王彤彤. 不同水化学条件下循环侵水砂岩劣化规律研究. 地质与勘探. 2022(06): 1281-1290 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (127) PDF downloads (17) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return